Skip to main content

Part of the book series: NATO Science Series ((ASHT,volume 47))

Abstract

Contemporary microelectronics is based on silicon devices, which involve SiO2/Si structure, and hence a thin SiO2/Si interface existing between the oxide and the Si substrate. To obtain the optimum Si-based device performance the dimensions of the elements have been reduced significantly to almost the technological limit. This miniaturization of elements has required also a drastic reduction of the SiO2 film thickness up to few tens of nanometers and, therefore, the interface becomes a significant part of the whole oxide. Further reduction of the oxide thickness, however, creates serious problems connected with device reliability. One of the problems is related to the high internal stresses induced in SiO2 films during oxidation process. The effect of this stress on Si oxidation kinetics has received considerable attention in the 1980s. In 1986 a special Workshop on Oxidation Mechanisms was organized treating growth mechanism of thin SiO2 and influence of stress on Si oxidation kinetics. Some of the papers presented at this Workshop were published in a special issue of Philosophical Magazine [1]. These topics still remain in the focus of extensive investigation due to anomalous phenomena observed at low oxidation temperatures and in the initial regime of Si oxidation [1-7]. The knowledge of structural strains and their eventual reduction and control gains growing technological importance, especially for ultrathin Si02 films, where the oxidation induced stress may deteriorate the device characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Workshop on oxidation processes (1987), Phil. Mag. B 55(2) pp. 113–311. and 55(6) pp. 631–763

    Google Scholar 

  2. Mott, N.F. Rigo, S. Rochet, F. and Stoneham, A.M. (1989) Oxidation of silicon, Phil. Mag. B 60 189–212.

    Article  CAS  Google Scholar 

  3. Irene, E.A. (1987) New results on low-temperature thermal oxidationPhil. Mag. B 55 131–145.

    Article  CAS  Google Scholar 

  4. Gusev, E.P. Lu, H.C. Gustafsson, T. Garfunkel, L. (1995) Growth mechanism of thin silicon oxide films on (100)Si studied by medium-energy ion scattering, Phys. Rev. B 52 1759–1775. and references therein.

    Article  CAS  Google Scholar 

  5. Landsberger, L.M. and Tiller, W.A. (1990) Two-step oxidation expeiments to determine structural and thermal history effects in thermally-grown SiO2 films on Si, J. Electrochem. Soc. 137 2825–2836.

    Article  CAS  Google Scholar 

  6. Kouvatsos, D. Huang, J.G. and Jaccodine, J.R. (1991) Fluorine-enhanced oxidation of silicon, J. Electrochem. Soc. 138 1752–1755.

    Article  CAS  Google Scholar 

  7. Leroy, B. (1987) Stresses and silicon interstitials during the oxidation of a silicon substrate, Phil. Mag. B 55 159–199. and references therein.

    Article  CAS  Google Scholar 

  8. Alexandrova, S., Szekeres, A. and Christova, K. (1988) Stress in silicon dioxide films, Phil. Mag. Lett. 58 33–36.

    CAS  Google Scholar 

  9. Szekeres, A and Danesh, P. (1996) Mechanical stress in SiO2/Si structures formed by thermal oxidation of amorphous and crystalline silicon, Semicond, Sci. Technol. 11 1225–1230.

    CAS  Google Scholar 

  10. Szekeres, A. Christova, K. and Paneva, A. (1992) Stress-induced refractive index variation in dry SiO2, Phil. Mag. B 65 961–966.

    Article  CAS  Google Scholar 

  11. Danesh, P. and Szekeres, A. (1995) Electrical properties of hydrogen-rich Si/SiO2 structures, J. Non-Crystal. Solids,187 270–272.

    Article  CAS  Google Scholar 

  12. Alexandrova, S. Szekeres, A. and Koprinarova, J. (1989) The role of stress on silicon dry oxidation kinetics, Semicond, Sci. Technol. 4 876–878.

    Article  Google Scholar 

  13. Paneva, A. and Szekeres, A. (1993) Ellipsometric approach for evaluation of optical parameters in thin multileyer structures, Surf. Interface Anal. 20 290–294.

    Article  CAS  Google Scholar 

  14. Beyer, W. and Wagner, H. (1982) Determination of the hydrogen diffusion coefficient in a-Si:H from hydrogen effusion experiments, 53 8745–8749.

    Google Scholar 

  15. Kobeda, E. and Irene, E.A. (1989) In situ stress measurements during thermal oxidation of silicon, J. Vac. Sci. Technol. B7 163–166.

    Article  CAS  Google Scholar 

  16. Fargeix, A. and Ghibaudo, G. (1984) Densification of thermal SiO2 due to intrinsic oxidation stressing, J. Phys. D: Appl. Phys. 17 2331–2336.

    Article  CAS  Google Scholar 

  17. Aspnes, E.S. and Theeten, J.B. (1980) Spectroscopic analysis of the interface between Si and its thermally grown oxide, J. Electrochem. Soc. 127 1359–1365. and references therein.

    Article  CAS  Google Scholar 

  18. Bruckner, R. (1970) Properties and structures of vitreous silica I. and II., J. Non-Crystal. Solids. 5 123–175. and 177–216.

    Article  Google Scholar 

  19. Kobeda, E. and Irene, E.A. (1987) Intrinsic SiO2 film stress measurements on thermally oxidized Si, J. Vac. Sci. Technol. B 5 15–19.

    Article  CAS  Google Scholar 

  20. EerNisse, E.P. (1977) Viscous flow of thermal SiO2, App/. Phys. Lett. 30 290–293.

    Article  CAS  Google Scholar 

  21. EerNisse, E.P. (1979) Stress in thermal SiO2 during growth, Appl. Phys. Lett. 35 8–10.

    Article  CAS  Google Scholar 

  22. Mack, L.M. Reisman,A and Bhattachacharya (1989) Stress measurements of thermally grown thin oxides on (100)Si substrates, J. Electrochem. Soc. 136 3433–3437.

    Article  CAS  Google Scholar 

  23. Hagon, J.P. Stoneham, A.M. and Jaros, M. (1987) Transport processes in silicon oxidation II Wet oxidation, Phil. Mag. B 55 225–235.

    Article  CAS  Google Scholar 

  24. Kuroda, T. and Iwakuro, H. (1993) Modification of silicon dioxide by hydrogen and deuterium plasmas at room temperature, Jpn. J. Appl. Phys. 32 L1273–L1276.

    Article  CAS  Google Scholar 

  25. Gale, R. Feigl, F.J. Magee, C.W. and Young, D.R. (1983) Hydrogen migration under avalanche injection of electrons in Si metal-oxide-semiconductor capacitors, J. Appl. Phys. 54 6938.

    Article  CAS  Google Scholar 

  26. Danesh, P. Szekeres, A. and Kaschieva, S. (1995) Oxidation of a-Si:H (Si/SiO2 interface properties), Solid-State Electronics 38 1179–1182.

    CAS  Google Scholar 

  27. Fitch, J.T. Bjokman, C.H Lucovsky, G Pollak, F. H. and Yin, X (1989) Intrinsic stress and stress gradients at the SiO2/Si interface in structures prepared by thermal oxidation of Si and subjected to rapid thermal annealing, J. Vac. Sci. Technol. B 7 775–781.

    CAS  Google Scholar 

  28. Mrstik, B.J. Revesz, A.G., Ancona, M. Hughes, H.L. (1987) Structural and strain-related effects during growth of SiO2 films on silicon, J. Electrochem. Soc. 134 2020–2026.

    Article  CAS  Google Scholar 

  29. Govorkov, S.V. Emel’yanov, V.I. Koroteev, N.I. Petrov, G.I. Shumay I.L. and Yakovlev, V.V. (1989) Inhomogeneous deformation of silicon surface layers probed by second-harmonic generation in reflection, J. Opt. Soc. Am. B 6 1117–1124.

    CAS  Google Scholar 

  30. Nguyen, N.V., Chandler-Hotowitz, D., Amirtharaj, P.M. and Pellegrino, J.G. (1994) Spectroscopic ellipsometry determination of the properties of the thin underlying strained Si layer and the roughness at SiO2/Si interface, Appl. Phys. Lett. 64 2688–2690.

    Article  CAS  Google Scholar 

  31. Jellison, Jr., G.E. (1991) Examination of thin SiO2 films on Si using spectroscopic polarization modulation ellipsometry, J. Appl. Phys. 69 7627–7634.

    Article  CAS  Google Scholar 

  32. Irene, E.A. (1983) Applications of spectroscopic ellipsometry to microelectronics, Thin Solid Films 233 96111.

    Google Scholar 

  33. Daum, W. Krause, H.-J. Reichel, U. and Ibach, H. (1993) Identification of strained silicon layers at Si-SiO2 interfaces and clean Si surfaces by nonlinear optical spectroscopy, Phys. Rev. Lett. 71 1234–1237.

    Article  CAS  Google Scholar 

  34. Dawson, J.L. Krisch, K. Evans-Lutterodt, K.W. Tang, M.-T. Manchanda, L. Green,M.L. Brasen, D. Higashi, G.S. and Boone, T. (1995) Kinetic smoothening: Growth thickness dependence of the interface width of the Si(001)/SiO2 interface, J. Appl. Phys. 77 4746–4749.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Szekeres, A. (1998). Stress in The SiO2/Si Structures Formed by Thermal Oxidation. In: Garfunkel, E., Gusev, E., Vul’, A. (eds) Fundamental Aspects of Ultrathin Dielectrics on Si-based Devices. NATO Science Series, vol 47. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5008-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5008-8_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5008-8

  • Online ISBN: 978-94-011-5008-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics