Abstract
The magnetic resonance force microscope (MRFM) marries the techniques of magnetic resonance imaging (MRI) and atomic force microscopy (AFM), to produce a three-dimensional imaging instrument with high, potentially atomic-scale, resolution. The principle of the MRFM has been successfully demonstrated in numerous experiments. By virtue of its unique capabilities, the MRFM shows promise to make important contributions in fields ranging from three-dimensional materials characterization to bio-molecular structure determination. Here we focus on its application to the characterization and study of layered magnetic materials; the ability to illuminate the properties of buried interfaces in such materials is a particularly important goal. While sensitivity and spatial resolution are currently still far from their theoretical limits, they are nonetheless comparable to or superior to that achievable in conventional MRI. Further improvement of the MRFM will involve operation at lower temperature, application of larger field gradients, introduction of advanced mechanical resonators and improved reduction of the spurious coupling when the magnet is on the resonator.
Keywords
- Field Gradient
- Conventional Magnetic Resonance Imaging
- Magnetic Resonance Signal
- Microstrip Resonator
- Electron Spin Reso
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Sidles, J.A.,(1991), Appl. Phys. Lett. 58, 2854.
Sidles, J.A.,(1992), Phys. Rev. Lett. 68, 1124.
Sidles, J.A., Garbini,J.L., and Drobny,G.P.,(1992) Rev. Sci. Instr. 63, 3881.
Sidles, J. A., and Rugar,D. (1993) Phys. Rev. Lett. 70, 3506.
Rugar, D.,Yannoni, C.S., and Sidles,J.A. (1992), Nature 360, 563.
Bruland, K. J., Krzystek, J., Garbini, J. L. and Sidles, J. A. (1995), Rev. Sci. Instr. 66, 2853.
Hammel, P. C., Zhang, Z., Moore, G. J., and Roukes, M. L. (1995), J. Low Temp. Phys. 101, 59.
Rugar, D. et al. (1994), Science 264, 1560.
Schaff, A., and Veeman, W. S. (1997),Appl. Phys. Lett. 70, 2598.
Zhang, Z. Hammel, P. C., and Wigen, P. E. (1996), Appl. Phys. Lett. 68, 2005.
Ziiger, O. and Rugar, D. (1993), Appl. Phys. Lett. 63, 2496.
Ziiger, O. and Rugar, D. (1994), J. Appl. Phys. 75, 6211.
Ziiger, O., Hoen, S. T., Yannoni, C. S., and Rugar, D. (1996), J. Appl. Phys. 79, 1881.
Sidles, J. A. et al. (1995), Rev. Mod. Phys. 67, 249.
Yannoni, C. S. et al. (1995), Brazilian J. Phys. 25, 417.
Yannoni, C. S., Ziiger, O., Rugar, D., and Sidles, J. A. (1996) in Grant, D.M. and Harris, R.K. (eds.), Encyclopedia of Nuclear Magnetic Resonance,Wiley, Chichester, pp. 2093–2100.
Rugar, D. et al. (1996) in Proceedings of the Robert A. Welch Foundation 40th Conference on Chemical Research—Chemistry on the Nanometer Scale, Houston, Texas.
Stowe, T. et al. (1997), Appl. Phys. Lett. 71, 288.
Baibich, M. N. et al. (1988), Phys. Rev. Lett. 61, 2472.
Wago, K. et al. (1996), J. Vac. Sci. Technol. B 14, 1197.
Fukushima, E., and Roeder, S. B. W. (1981), Experimental Pulse NMR A Nuts and Bolts Approach Addison-Wesley, Reading, MA, pp. 17–20.
Bruland, K. J., Garbini, J. L., Dougherty, W. M., and Sidles, J. A. (1996), J..4ppl. Phys. 80, 1959.
Zhang, Z., and Hammel, P. C. (1997) IEEE. Tran. Magn. in press.
Zhang, Z., Hammel, P. C., and Moore, G. J. (1996), Rev. Sci. Instr. 67, 3307.
Zhang, Z., Roukes, M. L., and Hammel, P. C. (1996) J. Appl. Phys. 80, 6931.
Itterbeek, A. V., and Labro, M. (1964) Physica 30, 157.
Damon, R., and Eshbach, J. (1961) J. Phys. Chem. Solids 19, 308.
Temiryazev, A. G., Tikhomirova, M. P., and Zilberman,P.E. (1996) Nonlinear Microwave Processing: Towards a New Range of Devices, in R. Marcelli and S. A. Nikitov (eds.)Kluwer Academic Publishers, the Netherlands, pp. 165–212.
Wallace, W. J., and Silsbee, R. H. (1991) Rev. Sci. Instr. 62, 1754.
Wago, K. et al., Rev. Sci. Instrum., in press.
Zhang, Z., Zhou, L., and Wigen, P. E. (1994) Phys. Rev. B 50, 6094.
Cleland, A. N., and Roukes, M. L. (1996)Appl. Phys. Lett. 69, 2653.
Tighe, T. S., Worlock, J. M., and M. L. Roukes (1997), Appl. Phys. Lett. 70, 2687.
Slichter, C. P. (1989) Principles of Magnetic Resonance, Springer-Verlag, New York.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1998 Springer Science+Business Media Dordrecht
About this paper
Cite this paper
Hammel, P.C., Zhang, Z., Midzor, M., Roukes, M.L., Wigen, P.E., Childress, J.R. (1998). The Magnetic Resonance Force Microscope. In: Bar’yakthar, V.G., Wigen, P.E., Lesnik, N.A. (eds) Frontiers in Magnetism of Reduced Dimension Systems. NATO ASI Series, vol 49. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5004-0_23
Download citation
DOI: https://doi.org/10.1007/978-94-011-5004-0_23
Publisher Name: Springer, Dordrecht
Print ISBN: 978-94-010-6101-8
Online ISBN: 978-94-011-5004-0
eBook Packages: Springer Book Archive