Skip to main content

The Magnetic Resonance Force Microscope

A New Microscopic Probe of Magnetic Materials

  • Conference paper

Part of the NATO ASI Series book series (ASHT,volume 49)

Abstract

The magnetic resonance force microscope (MRFM) marries the techniques of magnetic resonance imaging (MRI) and atomic force microscopy (AFM), to produce a three-dimensional imaging instrument with high, potentially atomic-scale, resolution. The principle of the MRFM has been successfully demonstrated in numerous experiments. By virtue of its unique capabilities, the MRFM shows promise to make important contributions in fields ranging from three-dimensional materials characterization to bio-molecular structure determination. Here we focus on its application to the characterization and study of layered magnetic materials; the ability to illuminate the properties of buried interfaces in such materials is a particularly important goal. While sensitivity and spatial resolution are currently still far from their theoretical limits, they are nonetheless comparable to or superior to that achievable in conventional MRI. Further improvement of the MRFM will involve operation at lower temperature, application of larger field gradients, introduction of advanced mechanical resonators and improved reduction of the spurious coupling when the magnet is on the resonator.

Keywords

  • Field Gradient
  • Conventional Magnetic Resonance Imaging
  • Magnetic Resonance Signal
  • Microstrip Resonator
  • Electron Spin Reso

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sidles, J.A.,(1991), Appl. Phys. Lett. 58, 2854.

    CrossRef  ADS  Google Scholar 

  2. Sidles, J.A.,(1992), Phys. Rev. Lett. 68, 1124.

    CrossRef  ADS  Google Scholar 

  3. Sidles, J.A., Garbini,J.L., and Drobny,G.P.,(1992) Rev. Sci. Instr. 63, 3881.

    CrossRef  ADS  Google Scholar 

  4. Sidles, J. A., and Rugar,D. (1993) Phys. Rev. Lett. 70, 3506.

    CrossRef  ADS  Google Scholar 

  5. Rugar, D.,Yannoni, C.S., and Sidles,J.A. (1992), Nature 360, 563.

    CrossRef  ADS  Google Scholar 

  6. Bruland, K. J., Krzystek, J., Garbini, J. L. and Sidles, J. A. (1995), Rev. Sci. Instr. 66, 2853.

    CrossRef  ADS  Google Scholar 

  7. Hammel, P. C., Zhang, Z., Moore, G. J., and Roukes, M. L. (1995), J. Low Temp. Phys. 101, 59.

    CrossRef  ADS  Google Scholar 

  8. Rugar, D. et al. (1994), Science 264, 1560.

    CrossRef  ADS  Google Scholar 

  9. Schaff, A., and Veeman, W. S. (1997),Appl. Phys. Lett. 70, 2598.

    CrossRef  ADS  Google Scholar 

  10. Zhang, Z. Hammel, P. C., and Wigen, P. E. (1996), Appl. Phys. Lett. 68, 2005.

    CrossRef  ADS  Google Scholar 

  11. Ziiger, O. and Rugar, D. (1993), Appl. Phys. Lett. 63, 2496.

    CrossRef  ADS  Google Scholar 

  12. Ziiger, O. and Rugar, D. (1994), J. Appl. Phys. 75, 6211.

    CrossRef  ADS  Google Scholar 

  13. Ziiger, O., Hoen, S. T., Yannoni, C. S., and Rugar, D. (1996), J. Appl. Phys. 79, 1881.

    CrossRef  ADS  Google Scholar 

  14. Sidles, J. A. et al. (1995), Rev. Mod. Phys. 67, 249.

    CrossRef  ADS  Google Scholar 

  15. Yannoni, C. S. et al. (1995), Brazilian J. Phys. 25, 417.

    Google Scholar 

  16. Yannoni, C. S., Ziiger, O., Rugar, D., and Sidles, J. A. (1996) in Grant, D.M. and Harris, R.K. (eds.), Encyclopedia of Nuclear Magnetic Resonance,Wiley, Chichester, pp. 2093–2100.

    Google Scholar 

  17. Rugar, D. et al. (1996) in Proceedings of the Robert A. Welch Foundation 40th Conference on Chemical Research—Chemistry on the Nanometer Scale, Houston, Texas.

    Google Scholar 

  18. Stowe, T. et al. (1997), Appl. Phys. Lett. 71, 288.

    CrossRef  ADS  Google Scholar 

  19. Baibich, M. N. et al. (1988), Phys. Rev. Lett. 61, 2472.

    CrossRef  ADS  Google Scholar 

  20. Wago, K. et al. (1996), J. Vac. Sci. Technol. B 14, 1197.

    CrossRef  Google Scholar 

  21. Fukushima, E., and Roeder, S. B. W. (1981), Experimental Pulse NMR A Nuts and Bolts Approach Addison-Wesley, Reading, MA, pp. 17–20.

    Google Scholar 

  22. Bruland, K. J., Garbini, J. L., Dougherty, W. M., and Sidles, J. A. (1996), J..4ppl. Phys. 80, 1959.

    CrossRef  Google Scholar 

  23. Zhang, Z., and Hammel, P. C. (1997) IEEE. Tran. Magn. in press.

    Google Scholar 

  24. Zhang, Z., Hammel, P. C., and Moore, G. J. (1996), Rev. Sci. Instr. 67, 3307.

    CrossRef  ADS  Google Scholar 

  25. Zhang, Z., Roukes, M. L., and Hammel, P. C. (1996) J. Appl. Phys. 80, 6931.

    CrossRef  ADS  Google Scholar 

  26. Itterbeek, A. V., and Labro, M. (1964) Physica 30, 157.

    CrossRef  ADS  Google Scholar 

  27. Damon, R., and Eshbach, J. (1961) J. Phys. Chem. Solids 19, 308.

    CrossRef  ADS  Google Scholar 

  28. Temiryazev, A. G., Tikhomirova, M. P., and Zilberman,P.E. (1996) Nonlinear Microwave Processing: Towards a New Range of Devices, in R. Marcelli and S. A. Nikitov (eds.)Kluwer Academic Publishers, the Netherlands, pp. 165–212.

    Google Scholar 

  29. Wallace, W. J., and Silsbee, R. H. (1991) Rev. Sci. Instr. 62, 1754.

    CrossRef  ADS  Google Scholar 

  30. Wago, K. et al., Rev. Sci. Instrum., in press.

    Google Scholar 

  31. Zhang, Z., Zhou, L., and Wigen, P. E. (1994) Phys. Rev. B 50, 6094.

    CrossRef  ADS  Google Scholar 

  32. Cleland, A. N., and Roukes, M. L. (1996)Appl. Phys. Lett. 69, 2653.

    CrossRef  ADS  Google Scholar 

  33. Tighe, T. S., Worlock, J. M., and M. L. Roukes (1997), Appl. Phys. Lett. 70, 2687.

    CrossRef  ADS  Google Scholar 

  34. Slichter, C. P. (1989) Principles of Magnetic Resonance, Springer-Verlag, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Hammel, P.C., Zhang, Z., Midzor, M., Roukes, M.L., Wigen, P.E., Childress, J.R. (1998). The Magnetic Resonance Force Microscope. In: Bar’yakthar, V.G., Wigen, P.E., Lesnik, N.A. (eds) Frontiers in Magnetism of Reduced Dimension Systems. NATO ASI Series, vol 49. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5004-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5004-0_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6101-8

  • Online ISBN: 978-94-011-5004-0

  • eBook Packages: Springer Book Archive