Skip to main content

Part of the book series: NATO ASI Series ((ASHT,volume 51))

  • 157 Accesses

Abstract

The development that has had the greatest influence on PET camera design in the last five years has undoubtedly been the introduction of full volume, septa-less acquisition and reconstruction. 3D PET, as it is now commonly referred to, was developed in the search for increased sensitivity and grew out of large area gas detector PET systems [1]. It was based on the original work of 3D reconstruction from electron micrographs of biomacromolecules by Vanstein and Orlov [2,3]. The translation of these ideas to multiring bismuth germanate (BGO) tomography was first implemented at the Hammersmith Hospital in a collaboration with groups from Geneva and Brussels, encouraged by the manufacturer CTI [4], and was quickly followed by others [5,6]. This has realised an increase in sensitivity of around fivefold for most multiring systems. It has allowed the development of full-time 3D systems based on BGO or NaI(Tl) detectors. The impact of 3D PET has been dramatic. In neuroscience, statistical mapping of 3D rCBF “activation” studies in single subjects, rather than groups, became possible. The duration over which 11C-labelled radiotracers could be studied was greatly increased and the quality of each datum was improved, which aids in better modelling and functional mapping results. At this point in time, while application of 3D PET to other regions of the body has been more protracted, it is nevertheless making slow progress [7,8,9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Townsend D.W., Frey P., Jeavons A., Reich G., Tochon-Danguy H.J., Donath A., Christin A., and Scalier G. (1987) High Density Avalanche Chamber (HIDAC) Positron Camera, J Nucl Med 28 1554–1562.

    PubMed  CAS  Google Scholar 

  2. Vanstein B.K. and Orlov S.S. (1974) General Theory of Direct 3D Reconstruction. in Man (ed), Proceedings of the 1974 International Workshop on 3D Reconstruction Techniques, Brookhaven National Laboratory.

    Google Scholar 

  3. Orlov S. (1976) Theory of three-dimensional reconstruction. 1. Conditions of a complete set of projections, Soy Phys Crystallogr 20, 312–314.

    Google Scholar 

  4. Townsend D.W., Spinks T.J., Jones T., Geissbühler A., Defrise M., Gilardi M.-C., and Heather J.D. (1989) Three dimensional reconstruction of PET data from a multi-ring camera, IEEE Trans Nucl Sci 36, 1056–1065.

    Article  CAS  Google Scholar 

  5. Dahlbom M., Eriksson L., Rosenqvist G., and Bohm C. (1989) A study of the possibility of using multi-slice PET systems for 3D imaging, IEEE Trans Nucl Sci 36, 1066–1071.

    Article  CAS  Google Scholar 

  6. Cherry S.R., Dahlbom M., and Hoffman E.J. (1991) 3D PET using a Conventional Multislice Tomograph without Septa, J Comput Assist Tomogr 15 655–668.

    Article  PubMed  CAS  Google Scholar 

  7. Bailey D.L., Lee K.-S., Stocks G., Meikle S.R., and Dobko T. (1993) Clinical 3D PET For Improved Patient Throughput, J Nucl Med 34, 184P (abstract).

    Google Scholar 

  8. Cutler P.D. and Xu M. (1995) Strategies to Improve 3D Whole Body PET Image Reconstruction, J Nucl Med 36, 93P (abstract).

    Google Scholar 

  9. Kinahan P.E., Jadali F., Sahin D., Brown M.L., Mintun M.A., Baron R.L., and Townsend D.W. (1995) A Comparison of 2D and 3D Abdominal PET Imaging, J Nucl Med 36, 7P (abstract).

    Google Scholar 

  10. Bailey D.L., Jones T., Watson J.D.G., Schnorr L., and Frackowiak R.S.J. (1993) Activation studies in 3D PET: evaluation of true signal gain, in Uemera K, Lassen N, Jones T and Kanno I (eds.), Quantification of Brain Function: Tracer Kinetics and Image Analysis in Brain PET, Excerpta Medica, pp. 341–350.

    Google Scholar 

  11. Cherry S.R., Woods R.P., Hoffman E.J., and Mazziotta J.C. (1993) Improved Detection of Focal Cerebral Blood Flow Changes Using Three-Dimensional Positron Emission Tomography, J Cereb Blood Flow Metab 13 630–638.

    Article  PubMed  CAS  Google Scholar 

  12. Silbersweig D.A., Stern E., Frith C.D., et al. (1993) Detection of Thirty-Second Cognitive Activations in Single Subjects with Positron Emission Tomography: A New Low-Dose H2 150 Regional Cerebral Blood Flow Three-Dimensional Imaging Technique, J Cereb Blood Flow Metab 13, 617–629.

    Article  PubMed  CAS  Google Scholar 

  13. Watson J.G.D., Myers R., Frackowiak R.S.J., Hajnal V., Woods R.P., Mazziotta J.C., Shipp S., and Zeki S. (1993) Area V5 of the Human Brain: Evidence from a Combined Study Using Positron Emission Tomography and Magnetic Resonance Imaging, Cereb Cortex 3 79–94.

    Article  PubMed  CAS  Google Scholar 

  14. Tadokoro M., Jones A.K.P., Cunningham V.J., Sashin D., Grootoonk S., Ashburner J., and Jones T. (1993) Parametric images of 11C-diprenorphine binding using spectral analysis of dynamic PET images acquired in 3D, in Uemera K, Lassen NA, Jones T and Kanno I (eds.), Quantification of Brain Function - Tracer Kinetics and Image Analysis in Brain PET, Excerpta Medica, pp. 289–294.

    Google Scholar 

  15. Carson R.E., Endres C.J., and Daube-Witherspoon M.E. (1995) Quantitative Accuracy of 3D PET for Brain Receptor Imaging, J Nucl Med 36, 81P (abstract).

    Google Scholar 

  16. Weeks R.A., Cunningham V., Walters S., Harding A.E., and Brooks D.J. (1995) A Comparison of Region of Interest and Statistical Parametric Mapping Analysis in PET Ligand Work: 11C-Diprenorphine in Huntington’s Disease and Tourette’s Syndrome, J Cereb Blood Flow Metab 15, S41(abstract).

    Google Scholar 

  17. Rakshi J., Bailey D.L., Morrish P.K., and Brooks D.J. (1996) Implementation of 3D Acquisition, Reconstruction and Analysis of Dynamic Fluorodopa Studies, in Myers R, Cunningham VJ, Bailey DL and Jones T (eds.), Quantification of Brain Function Using PET,Academic Press, San Diego, pp. 82–87.

    Chapter  Google Scholar 

  18. Townsend D.W., Price J.C., Mintun M.A., Kinahan P.E., Jadali F., Sashin D., Simpson N., and Mathis C.A. (1996) Scatter Correction for Brain Receptor Quantitation in 3D PET, in Myers R, Cunningham VJ, Bailey DL and Jones T (eds.), Quantification of Brain Function Using PET, Academic Press, San Diego, pp. 76–81.

    Chapter  Google Scholar 

  19. Jones T., Bailey D.L., Bloomfield P.M., et al. (1996) Performance Characteristics And Novel Design Aspects Of The Most Sensitive PET Camera Built For High Temporal And Spatial Resolution, J Nucl Med 37, 85P(abstract).

    Google Scholar 

  20. Derenzo S.E., Budinger T.F., Cahoon J.L., Huesman R.H., and Jackson H.G. (1977) High resolution computed tomography of Positron Emitters, IEEE Trans Nucl Sci NS-24, 544–558.

    Article  Google Scholar 

  21. deKemp R.A. and Nahmias C. (1994) Attenuation correction in PET using single photon transmission measurement, Med Phys 21, 771–778.

    Article  Google Scholar 

  22. Karp J.S., Muehllehner G., Qu H., and Yan X.-H. (1995) Singles transmission in volume-imaging PET with a 137Cs source, Phys Med Biol 40, 929–944.

    Article  PubMed  CAS  Google Scholar 

  23. Yu S.K. and Nahmias C. (1995) Single-photon transmission measurements in positron emission tography using 137Cs, Phys Med Biol 40, 1255–1266.

    Article  PubMed  CAS  Google Scholar 

  24. Jones W.F., Vaigneur K., Young J., Moyers C., and Nahmias C. (1995) The Architectural Impact of Single Photon Transmission Measurements on Full Ring 3D Positron Tomography. in Moonier PA (ed.), Proceedings of the 1995 IEEE Nuclear Science Symposium and Medical Imaging Conference, San Francisco. Vol 2:1026–1030.

    Chapter  Google Scholar 

  25. Xu E.Z., Mullani N.A., Gould K.L., and Anderson W.L. (1991) A segmented attenuation correction for PET, JNucl Med 32, 161–165.

    CAS  Google Scholar 

  26. Iida H., Miura S., Kanno I., Ogawa T., and Uemera K. (1996) A New PET Camera for Noninvasive Quantitation of Physiological Functional Parametric Images: Headtome-V-Dual, in Myers R, Cunningham V, Bailey DL and Jones T (eds.), Quantification of Brain Function Using PET,Academic Press, San Diego, pp. 57–61.

    Chapter  Google Scholar 

  27. Muehllehner G., Karp J.S., Mankoff D.A., Beerbohm D., and Ordonez C.E. (1988) Design and performance of a new positron emission tomograph, IEEE Trans Nucl Sci 35, 670–674.

    Article  CAS  Google Scholar 

  28. Karp J.S., Kinahan P.E., and Mankoff D.A. (1991) Positron Emission Tomography with a Large Axial Acceptance Angle: Signal-to-Noise Considerations, IEEE Trans Med Imag MI-10, 249–255.

    Article  Google Scholar 

  29. Townsend D.W., Wensveen M., Byars L.G., et al. (1993) A Rotating PET Scanner Using BGO Block Detectors: Design, Performance and Applications, J Nucl Med 34, 1367–1376.

    PubMed  CAS  Google Scholar 

  30. Townsend D.W., Bishop H., Mintun M.A., Byars L.G., Geissbühler A., and Nutt R. (1994) Physical and Clinical Performance of a Rotating Positron Tomograph, J Nucl Med 35, 41P (abstract).

    Google Scholar 

  31. Bailey D.L., Young H.E., Bloomfield P.M., et al. (1996) ECAT ART - A Continuously Rotating Pet Camera: Performance Characteristics, Comparison With A Full Ring System, Initial Clinical Studies, And Installation Considerations In A Nuclear Medicine Department, Eur J Nucl Med (In Press).

    Google Scholar 

  32. Takami K., Ishimatsu K., Hayashi T., et al. (1982) Design Considerations for a Continuously Rotating Positron Computed Tomograph, IEEE Trans Nucl Sci NS-29, 534–538.

    Article  Google Scholar 

  33. Townsend D.W., Kinahan P.E., and Beyer T. (1996) Attenuation Correction for a Combined 3D PET/CT Scanner, Physica Medica XII, 43–48.

    Google Scholar 

  34. Ott R.J. (1993) Wire Chambers Revisited, Eur J Nucl Med 20, 348–358.

    Article  PubMed  CAS  Google Scholar 

  35. Tavernier S., Bruyndonckx P., Debruyne J., et al. (1994) First Results from a Prototype PET Scanner Using BaF2 Scintillator and Photosensitive Wire Chambers. in Trendier RC (ed.), Proceedings of the 1994 IEEE Nuclear Science Symposium and Medical Imaging Conference, Norfolk, VA, USA. Vol 4:1885–1887.

    Google Scholar 

  36. Lewellen T.K., Miyaoka R.S., Kaplan M.S., Kohlmyer S.K., Costa W., and Jansen F. (1995) Preliminary Investigation of Coincidence Imaging with a Standard Dual-Headed SPECT System, J Nucl Med 36, 175P (abstract).

    Google Scholar 

  37. Rajeswaran S., Hume S.P., Cremer J.E., Young J., and Bailey D.L. (1991) Dynamic monitoring of [11C]diprenorphine in rat brain using a prototype positron imaging device, J Neurosci Meth 40, 223–232.

    Article  CAS  Google Scholar 

  38. Rajeswaran S., Bailey D.L., Hume S.P., Townsend D.W., Geissbühler A., Young J., and Jones T. (1992) 2-D and 3-D Imaging of Small Animals and the Human Radial Artery with a High-Resolution Detector for PET, Trans Med Imag MI-11, 386–391.

    Article  Google Scholar 

  39. Watanabe M., Uchida H., Okada H., Shimizu K., Satoh N., Yoshikawa E., Ohmura T., Yamashita T., and Tanaka E. (1992) A High Resolution PET for Animal Studies, IEEE Trans Med Imag MI-11, 577–580.

    Article  Google Scholar 

  40. Cherry S.R., Shao Y., Silverman R.W., et al. (1996) microPET: A Dedicated PET Scanner for Small Animal Imaging, J Nucl Med 37, 86P (abstract).

    Google Scholar 

  41. Hume S.P., Luthra S.K., Brown D.J., et al. (1996) Evaluation of [11C]RTI121 as a selective radioligand fro PET studies of the dopamine transporter, Nucl Med Biol 23, 377–384.

    Article  PubMed  CAS  Google Scholar 

  42. Hume S.P., Lammertsma A.A., Myers R., Rajeswaran S., Bloomfield P.M., Ashworth S., Torres E.M., Watson I., and Jones T. (1996) The potential of high resolution positron emission tomography to monitor dopaminergic function in rat models of disease, Neurosci Meth 67, 103–112.

    CAS  Google Scholar 

  43. Cutler P.D., Cherry S.R., Hoffman E.J., Digby W.M., and Phelps M.E. (1992) Design Features and Performance of a PET System for Animal Research, J Nucl Med 33, 595–604.

    PubMed  CAS  Google Scholar 

  44. Bloomfield P.M., Rajeswaren S., Spinks T.J., et al. (1995) Design and Physical Characteristics of a Small Animal Positron Emission Tomograph, Phys Med Biol 40, 1105–1126.

    Article  PubMed  CAS  Google Scholar 

  45. Hutchins G.D., Simon A.J., Winkle W., and Carlson K. (1996) Performance Evaluation of a Small Field of View (FOV) High Sensitivity/High Spatial Resolution PET Scanner, J Nucl Med 37, 86P (abstract).

    Google Scholar 

  46. Tavernier S., Bruyndockx P., and Shuping Z. (1992) A Fully 3D Small PET System, Phys Med Biol 37, 635–643.

    Article  PubMed  CAS  Google Scholar 

  47. Marriott C.J., Cadorette J.E., Lecomte R., Scasnar V., Rousseau J., and van Lier J.E. (1994) High-Resolution PET Imaging and Quantitation of Pharmaceutical Biodistributions in a Small Animal Using Avalanche Photodiode Detectors, J Nucl Med 35, 1390–1397.

    PubMed  CAS  Google Scholar 

  48. Melcher C.L. and Schweitzer J.S. (1991) Cerium-doped Lutetium Oxyorthorthsilicate: A Fast, Efficient New Scintillator. in Baldwin GT (ed.), Proceedings of the 1991 IEEE Nuclear Science Symposium and Medical Imaging Conference, Santa Fe. Vol 1:228–231.

    Chapter  Google Scholar 

  49. Moses W.W., Derenzo S.E., Ho M.H., Andreaco M.S., Paulus M.J., and Nutt R. (1996) Performance of PET Detector Module with LSO Scintillator Crystals and Photodiode Readout, J Nucl Med 37, 87P (abstract).

    Google Scholar 

  50. Moses W.W., Derenzo S.E., and Budinger T.F. (1994) PET detector modules based on novel detector technologies, Nucl Instr Meth Phys Res A353, 189–194.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bailey, D.L. (1998). Recent Trends in PET Camera Designs. In: Gulyás, B., Müller-Gärtner, H.W. (eds) Positron Emission Tomography: A Critical Assessment of Recent Trends. NATO ASI Series, vol 51. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4996-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4996-9_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6097-4

  • Online ISBN: 978-94-011-4996-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics