Skip to main content

Abstract

There is a well-known proverb that says: ‘Prevention is better than cure’, and as already indicated in this book, the best way of preventing accidents of any type is by eliminating the possibility of them taking place. The reduction of risk should begin with the conception of a new process, designing intrinsically safe and easy to control plants.

But he suddenly remembered something that one of the ship’s designers had once said to him, when discussing ‘fail safe’ systems: ‘We can design a system that’s proof against accident and stupidity; but we can’t design one that’s proof against deliberate malice… Arthur C. Clarke, 2001 A Space Odyssey, Chapter XXVIII

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kletz, T. ( 1985) Cheaper, Safer Plants or Wealth and Safety at Work. Notes on Inherently Safer and Simpler Plants, Institute of Chemical Engineers, Rugby.

    Google Scholar 

  2. CCPS (Center for Chemical Process Safety) (1993) Guidelines for Engineering Design for Process Safety, American Institute of Chemical Engineers, New York.

    Book  Google Scholar 

  3. Kletz, T. (1991) An Engineer’s View of Human Error, 2nd edn, The Institution of Chemical Engineers, Rugby.

    Google Scholar 

  4. Perry, R. H. and Green, D. (eds) (1984) Perry’s Chemical Engineer’s Handbook, 6th edn, McGraw-Hill, New York.

    Google Scholar 

  5. Tubular Exchangers Manufacturers Association (TEMA) (1988) Standards, 7th edn, Tarrytown, NJ.

    Google Scholar 

  6. Spanish Department of Industry and Energy, Publications Centre (1989) Reglamento de aparatos a presión e instrucciones técnicas complementarias (Pressure vessels code and related technical instructions), Madrid.

    Google Scholar 

  7. Directive on the Control of Major-accident Hazards Involving Dangerous Substances. 96/82/EC of 9 December 1996. Modified later by 87/216/EC and 88/610/EC.

    Google Scholar 

  8. Levenspiel, O. (1972) Chemical Reaction Engineering, 2nd edn, Wiley, New York.

    Google Scholar 

  9. Levenspiel, O. (1979) Chemical Reaction Omnibook, Corvallis, OSU book centre.

    Google Scholar 

  10. Aris, R. (1969) Elementary Chemical Reactor Analysis, Prentice-Hall, Englewood Cliffs.

    Google Scholar 

  11. Mecklenburg, J. (1983) Plant Layout, Longman.

    Google Scholar 

  12. Kern, R. (1978) Series of articles on layout. Chem. Eng., August (first chapter).

    Google Scholar 

  13. Wells, G. L. and Rose, L. M. (1986) The Art of Chemical Process Design. Elsevier.

    Google Scholar 

  14. The American Society of Mechanical Engineers (1986) ASME Boiler and Pressure Vessel Code, Section VIII, Rules for construction of pressure vessels, Division I and Division II — Alternative rules. ASME, New York.

    Google Scholar 

  15. American Petroleum Institute (1990) Guide for pressure relieving and depressuring systems. API Recommended Practice 521, 3rd edn, API, Washington, DC.

    Google Scholar 

  16. NFPA (National Fire Protection Association) (1988) NFPA 30: Flammable and combustible liquids code, NFPA, Quincy, Massachussets.

    Google Scholar 

  17. Kletz, T. A. (1987) An Engineer’s View of Human Error. Proceedings of the International Symposium on Preventing Major Chemical Accidents (ed. J. L. Woodward), CCPS/AIChE, New York.

    Google Scholar 

  18. Parry, C. F. (1992) Relief Systems Handbook, Institute of Chemical Engineers, Rugby.

    Google Scholar 

  19. Reid, R. C., Prausnitz, J. M. and Poling, B. E. (1987) The Properties of Gases and Liquids, McGraw-Hill, New York.

    Google Scholar 

  20. American Petroleum Institute (1984) Flanged steel safety-relief valves. API Standard 526, 3rd edn, API, Washington, DC.

    Google Scholar 

  21. American Petroleum Institute (1990) Sizing, selection, and installation of pressure-relieving devices in refineries. API Recommended Practice 520. Part 1 — Sizing and selection, 5th edn, API, Washington, DC; (1988) Part 2 — Installation, 3rd edn, API, Washington, DC.

    Google Scholar 

  22. Huff, J. E. (1977) A General Approach to the Sizing of Emergency Pressure Relief Systems. Proceedings of Second International Symposium on Loss Prevention and Safety Promotion in the Process Industries, September 1977, Heidelberg, Germany. DECHEMA, Frankfurt, pp. IV 233–40.

    Google Scholar 

  23. Singh, J. (1990) Sizing relief vents for runaway reactions. Chem Eng., August.

    Google Scholar 

  24. Fauske, H. K., Epstein, M., Grolmes, M. A. and Leung J. C. (1986) Emergency relief vent sizing for fire emergencies involving liquid-filled atmospheric storage vessels. Plant/Operations Prog.,5(4).

    Google Scholar 

  25. Grolmes M. A. and Epstein, M. (1985) Vapor-liquid disengagement in atmospheric liquid storage vessels subjected to external heat source. Plant/Operations Prog., 4(4).

    Google Scholar 

  26. Leung, J. C. (1986) A generalised correlation for one-component homogeneous equilibrium flashing choked flow. AIChE J., 32(10), 1743.

    Article  CAS  Google Scholar 

  27. Fauske, H. K. (1984) Generalised vent sizing nomogram for runaway chemical reactions. Plant/ Operations Prog., 3(4), 213.

    Article  CAS  Google Scholar 

  28. Leung, J. C. and Grolmes, M. A. (1987) The discharge of two-phase flashing flow in a horizontal duct. AIChE J., 33(3), 524.

    Article  CAS  Google Scholar 

  29. First, K. E. and Huff, J. E. (1989) Design Charts for Two Phase Flashing Flow in Emergency Pressure Relief Systems. Proceedings of International Symposium on Runaway Chemical Reactions, CCPS/AIChE. New York.

    Google Scholar 

  30. Leung, J. C. and Epstein, M. (1991) Flashing two-phase flow including the effects of non condensable gases. ASME Trans. J. of Heat Transf., 113(1), 269.

    Article  CAS  Google Scholar 

  31. Fauske, H. K. (1985) Emergency Relief System (ERS) design. Chem. Eng. Prog., August, 53–6.

    Google Scholar 

  32. Fauske, H. K. and Leung, J. C. (1985) New experimental technique for characterising runaway chemical reactions. Chem. Eng. Prog., August, 39.

    Google Scholar 

  33. Huff, J. E. (1982) Emergency venting requirements. Plant/Operations Prog., 1(4), 211.

    Article  CAS  Google Scholar 

  34. Leung, J. C. (1986) Simplified vent sizing equations for emergency relief requirements in reactors and storage vessels. AIChE J., 32(10), 1622.

    Article  CAS  Google Scholar 

  35. Fauske, H. K. (1984) A quick approach to reactor vent sizing. Plant/Operations Prog., 3(3).

    Google Scholar 

  36. Leung J. C. (1992) Venting of runaway reactions with gas generation. AIChE J., 38(5), 723.

    Article  CAS  Google Scholar 

  37. Grolmes, M. A. and Leung, J. C. (1985) Code method for evaluating integrated relief phenomena. Chem. Eng. Prog., August, 47–52.

    Google Scholar 

  38. NFPA (National Fire Protection Association) (1988) NFPA 68: Guide for venting of deflagrations, NFPA, Quincy, Massachussets.

    Google Scholar 

  39. Schofield, C. (1985) Guide to Dust Explosion Prevention and Protection. Part 1 — Venting, Institute of Chemical Engineers, Rugby.

    Google Scholar 

  40. Swift, I. and Epstein, M. (1987) Performance of low pressure explosion vents. Plant/Operations Prog., 6(2).

    Google Scholar 

  41. Sinnot, R. K. (1996) Coulson and Richardson’s Chemical Engineering, Vol. 6, Chemical Engineering Design, 2nd edn, Pergamon, Oxford.

    Google Scholar 

  42. Coulson, J. M. and Richardson, J. F. Chemical Engineering, Vols 1 and 3, 5th and 4th edn, Pergamon, Oxford.

    Google Scholar 

  43. Kern, D. Q. (1950) Process Heat Transfer, McGraw-Hill, New York.

    Google Scholar 

  44. Crowl, D. A. and Louvar, J. F. (1990) Chemical Process Safety, Fundamentals with Applications, Prentice Hall, Englewood Cliffs.

    Google Scholar 

  45. Treybal, R. (1980) Mass Transfer Operations, 3rd edn, McGraw-Hill, New York.

    Google Scholar 

  46. Hall, S. M. (1993) Size and design of relief headers. Chem. Eng. Prog., 89(3).

    Google Scholar 

  47. Miller, D. S. (1986) Internal Flow Systems, BHRA, The Fluid Engineering Centre.

    Google Scholar 

  48. Hooper, W. B. (1981) The two-K method predicts head losses in pipe fittings. Chem. Eng., 24.

    Google Scholar 

  49. Wells, G. L. (1980) Safety in Process Plant Design, Godwin/IChemE, Rugby.

    Google Scholar 

  50. King, R. (1990) Safety in the Process Industries. Butterworth-Heinemann, London.

    Google Scholar 

  51. Lees, F. P. ( 1980) Loss Prevention in the Process Industries, Butterworth-Heinemann, London.

    Google Scholar 

  52. Englund, S. M. (1991) Design and operate plants for inherent safety (2 parts). Chem. Eng. Prog., March-May.

    Google Scholar 

  53. Kletz, T. (1994) What Went Wrong? Case Histories of Process Plant Disasters, 3rd edn, Gulf Publishing Company, Houston.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Santamaría Ramiro, J.M., Braña Aísa, P.A. (1998). Risk reduction in the design of chemical plants. In: Risk Analysis and Reduction in the Chemical Process Industry. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4936-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4936-5_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6071-4

  • Online ISBN: 978-94-011-4936-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics