Skip to main content

Oscillatory rheometry

  • Chapter
Book cover Rheological Measurement

Abstract

The oscillatory tests described in this chapter belong to the general framework of dynamic measurements in which both stress and strain vary harmonically with time. The relevant strains are small enough to be in the limits of linear viscoelasticity: the mathematical theory of linear viscoelasticity [1] constitutes the formal analytical tool which will be used to analyse the experimental data. This theory gives exact interrelations between the various material functions defined in the time and frequency domains, so in principle the measurement of a single visco-elastic function constitutes a complete linear viscoelastic characterization. But the picture is not so simple, as each rheometrical technique explores a limited range of times or frequencies: so the various experimental and analytical methods in this chapter are often complementary, as will be explained in detail. Hence this family of rheological techniques may be defined as mechanical spectroscopy with a mathematical formalism which is very close to those of other spectroscopic methods in physics and physical chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Gross (1953) Mathematical Structure of the Theories of Linear Viscoelasticity, Hermann, Paris.

    Google Scholar 

  2. J.D. Ferry (1970) Viscoelastic Properties of Polymers, Wiley, New York.

    Google Scholar 

  3. G. Harison (1976) The Dynamic Properties of Supercooled Liquids, Academic Press, London.

    Google Scholar 

  4. G. Marin and W.W. Graessley (1977) Rheol. Acta 16, 527.

    Article  CAS  Google Scholar 

  5. G. Marin, J.J. Labaig and P. Monge (1975) Polymer 16, 223.

    Article  CAS  Google Scholar 

  6. J.P. Montfort, G. Marin and P. Monge (1984) Macromolecules 17, 1551.

    Article  CAS  Google Scholar 

  7. K. Walters (1975) Rheometry, Chapman and Hall, London.

    Google Scholar 

  8. W. Philipoff (1965) in Physical Acoustics, Vol IIB, W.P. Mason (ed), Academic Press, New York.

    Google Scholar 

  9. A.N. Gent (1960) Brit. J. Appl. Phys. 11, 165.

    Article  Google Scholar 

  10. B. Maxwell and R.P. Chartoff (1975) Trans. Soc. Rheol.9, 41.

    Article  Google Scholar 

  11. W.M. Davis and C. Macosko (1974) A.I.Ch.E. J. 20, 600.

    Article  CAS  Google Scholar 

  12. A. Kepes (1968) 5th Intl Congress on Rheol, Kyoto.

    Google Scholar 

  13. M. Yamamoto (1969) Jap. J. Appl. Phys. 8, 152.

    Google Scholar 

  14. T.E.R. Jones and K. Walters (1971) J. Phys. D2, 815.

    Article  Google Scholar 

  15. N.G. Abbot, G.W. Bowen and K. Walters (1971) J. Phys. D4, 190.

    Article  Google Scholar 

  16. J.M. Broadbent and K. Walters (1971) J. Phys. D4, 1869.

    Article  Google Scholar 

  17. G.W. Bowen, J.M. Broadbent and K. Walters (1973) J. Phys. D6, 83.

    Article  Google Scholar 

  18. A. Silberberg and P.J. Mijnlieff (1970) J. Polym. Sci. A2 8, 1089.

    Google Scholar 

  19. G. Marin, J. Peyrelasse, P. Monge (1983) Rheol. Acta 22, 476.

    Article  CAS  Google Scholar 

  20. D J. Plazek (1958) Trans. Soc. Rheol.2, 39.

    Article  Google Scholar 

  21. D.J. Plazek (1980) Polymer J. 12, 1.

    Article  Google Scholar 

  22. E.E. Holly, S.K. Ventakaram, F. Chambon and H. Winter (1988) J. Non-Newt. Fluid Mech. 27, 17.

    Article  CAS  Google Scholar 

  23. M. Mours and H.H. Winter (1994) Rheol. Acta 33, 385.

    Article  CAS  Google Scholar 

  24. Molecular rheology and linear viscoelasticity, in Rheology for Polymer Melts Processing, Elsevier, London (1996).

    Google Scholar 

  25. D.W. Mead (1994)J. Rheol. 38, 6.

    Google Scholar 

  26. S.H. Wasserman (1994) J. Rheol, 39, 601.

    Article  Google Scholar 

  27. D. Serrano and D. Harran (1989) Polym. Eng. Sci. (1989) 29, 531.

    Article  CAS  Google Scholar 

  28. G. Marin, P. Vandermaesen and P. Tordjeman (1993) J. Adhesion 43, 1.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Marin, G. (1998). Oscillatory rheometry. In: Collyer, A.A., Clegg, D.W. (eds) Rheological Measurement. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4934-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4934-1_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6070-7

  • Online ISBN: 978-94-011-4934-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics