Skip to main content

Quality control and validation

  • Chapter
Safety in Cell and Tissue Culture
  • 262 Accesses

Abstract

There is increasing acceptance and utilization of human and animal cell lines for the manufacture of biologicals. Continuous cell lines offer more ethically acceptable and reproducible means of production in comparison with the use of animals and primary cells. Furthermore, mammalian cell lines have the potential to provide complex recombinant biologicals with post-translational modifications (i.e. glycosylation) which are typical of native glycoproteins. The proven capabilites of 10000–1 systems has demonstrated that cell culture can be used in industrial-scale operations [1]. In regulatory matters there is a developing trend for emphasis to be placed on defining and validating the end product, rather than all constituents of the production process. This may enable the use of a wider variety of cell lines, thus increasing the opportunities to enhance productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ball, G.D., Fanates, K.H., Furnter, N.B. and Johnston, M.D. (1987) Experience into the cultivation of mammalian cells on the 80001 scale, in Large Scale Mammalian Cell Culture (eds J. Feder and W.R. Tolbert), Academic Press, Ohio.

    Google Scholar 

  2. Wood, D.T. and Minor, P.D. (1990) Use of human diploid cells in vaccine production (Meeting Report). Biologicals, 18, 143.

    Article  PubMed  CAS  Google Scholar 

  3. WHO (1987) Acceptability of Cell Substrates for Production of Biologicals, Technical Report Series 747, World Health Organisation, Geneva.

    Google Scholar 

  4. WHO (1989) WHO Cell Banks of Continuous Cell Lines for the Production of Biologicals, Technical Report Series 756, World Health Organisation, Geneva.

    Google Scholar 

  5. Montagnon, B.J. (1989) Polio and rabies vaccines produced in continuous cell Unes: reality for the Vero cell line. Dev. Biol. Stand., 70, 27.

    PubMed  CAS  Google Scholar 

  6. CBER (1993) Points to Consider in the Characterisation of Cell Lines used to produce Biologicals, Centers for Biologics Evaluation and Research, Food and Drug Administration, Bethesda.

    Google Scholar 

  7. Urlaub, G., Kas, E., Carothers, A.M. and Chasin, L.A. (1983) Detection of the diploid dihydrofolate reductase locus from cultured mammalian cells. Cell, 33, 405–412.

    Article  PubMed  CAS  Google Scholar 

  8. Hay, R. (1988) The seed stock concept and QC for cell unes. Analytbroch, 171, 225–237.

    CAS  Google Scholar 

  9. Doyle, A. and Griffiths, J.B. (1992) Standardisation of animal cell culture processes, in Animal Cell Biotechnology, Vol. 5, Academic Press, London.

    Google Scholar 

  10. FDA (1993) Code of Federal Regulations: Sterility, 21CFR 610.12; Mycoplasma, 21 CFR 610.30. US Food and Drug Administration, Rockville, Maryland.

    Google Scholar 

  11. Anon. (1993) The Use of Process Simulation Tests in the Evaluation of Processes for the Manufacture of Sterile Products, Technical Monograph No. 4, Parenteral Society, Swindon, UK.

    Google Scholar 

  12. DoH (1996) Good Laboratory Practice: The United Kingdom Compliance Programme, Department of Health, London.

    Google Scholar 

  13. WHO Expert Committee on Biological Standardisation Requirements for Use of Animal Cells as in vitro Substrates for the Production of Biologicals, Technical Report Series No. 50, World Health Organisation, Geneva (1998).

    Google Scholar 

  14. Rutzky, C.P., Kaye, C.J., Siciliano et al. (1980) Longitudinal karyotype and genetic signature analysis of cultured human colon adenocarcinoma cell lines LS180 and LS174T. Cancer Res., 40, 1443–1448.

    PubMed  CAS  Google Scholar 

  15. Peterson, W.D., Ottenbrit, M.J. and Hukku, B. (1984) Isoenzyme Analysis in Cell Culture Uses. Standardization of Vert. Cults in vitro, Gaithesberg, USA.

    Google Scholar 

  16. O’Brien, S.J., Cliener, G., Olson, R. and Shannon, J.E. (1977) Enzyme polymorphisms as genetic signatures in human cell cultures. Science, 195, 1345–1348.

    Article  PubMed  Google Scholar 

  17. Gilbert, D.A., Reid, Y.A., Gail, M.H. et al. (1990) Application of DNA fingerprints for cell line individualisation. Am. J. Hum. Genet., 47, 499–514.

    PubMed  CAS  Google Scholar 

  18. Stacey, G.N., Bolton, B.J. and Doyle, A. (1991) The quality control of cell banks using DNA fingerprinting, in DNA Fingerprinting: Approaches and Applications (eds T. Burke, A.J. Jeffreys, G. Dolf and R. Wolf), Birkhauser, Berlin.

    Google Scholar 

  19. Stacey, G.N., Bolton, B.J. and Doyle, A. (1992) DNA fingerprinting transforms the art of cell authentication. Nature, 391, 261–262.

    Article  Google Scholar 

  20. Masters, J.R., Bedford, P., Kearney, A., Povey, S. and Franks, L.M. (1988) Bladder cancer cell line cross-contamination: identification using a locus specific minisatellite probe. Brit. J. Cancer, 57: 284–286.

    Article  PubMed  CAS  Google Scholar 

  21. Stacey, G.N., Hoelzl, H., Stephenson, J.R. and Doyle, A. (1997) Authentication of animal cell cultures by direct visualization of repetitive DNA, aldolase gene PCR and isoenzyme analysis. Biologicals, 25, 75–85.

    Article  PubMed  CAS  Google Scholar 

  22. Williams, J.G.K., Kubelik, A.R., Livak, K.L. et al. (1990) DNA polymoprhisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acid Res., 18, 6531–6535.

    Article  CAS  Google Scholar 

  23. Jeffreys, A.J., Wilson, V. and Thein, S.-L. (1985) Hypervariable “minisatellite” regions in human DNA. Nature, 314, 67–73.

    Article  PubMed  CAS  Google Scholar 

  24. Vassart, G., Georges, M., Monsieur, R. et al. (1987) A sequence in M13 phage detects hypervariable minisatellites in human and animal DNA. Science, 235, 683–6844.

    Article  PubMed  CAS  Google Scholar 

  25. Ryskov, A.P., Jincharadze, A.G., Prosnyak, M.I. et al. (1988) M13 phage DNA as a universal marker for DNA fingerprinting of animals, plants and microorganisms. FEBS Lett., 233, 388–392.

    Article  PubMed  CAS  Google Scholar 

  26. Tautz, D. (1993) Notes on the definition and nomenclature of tandemly repetitive sequences, in DNA Fingerprinting: The State of the Science (eds S.D. Pena, R. Chakraborty, J.T. Epplen and A.J. Jeffreys), Birkhauser, Basel.

    Google Scholar 

  27. Meyer, W. and Mitchell, T.G. (1995) Polymerase chain reaction fingerprinting in fungi using single primers specific to minisatellites and simple repetitive DNA sequences: strain variation in Cryptococcus neoformans. Electrophoresis, 16, 1648–1656.

    Article  PubMed  CAS  Google Scholar 

  28. Carthew, P. (1986). Is rodent virus contamination of monoclonal antibody preparations for use in human therapy a hazard? J. Gen. Virol., 67, 9613–9614.

    Article  Google Scholar 

  29. Minor, P.D. (1994) Significance of contamination with viruses of cell lines used in the production of biological medicinal products, in Animal Cell Technology: Products for Today, Prospects for Tomorrow (eds R.E. Spier, J.B. Griffiths and W. Berthold), Butterworth-Heinemann, Oxford, pp. 741–750.

    Google Scholar 

  30. Council of Europe (1991) Biological safety tests, in European Pharmacopoeia (2nd edn), Vol. 2, Council of Europe, Maisonneuve, pp. v.2.1–v.2.1.3.

    Google Scholar 

  31. Mowles, J. (1990) Mycoplasma detection, in Methods in Molecular Biology: Animal Cell Culture (eds J.W. Pollard and J.M. Walker), Humana Press, New Jersey, pp. 65–74.

    Chapter  Google Scholar 

  32. Tao, C.Z., Cameron, R., Harbour, C. and Barford, J.P. (1994) The development of appropriate viral models for the validation of viral inactivation procedures, in Animal Cell Technology: Products for Today Prospects for Tomorrow (eds R.E. Spier, J.B. Griffiths and W. Berthold), Butterworth-Heinemann, Oxford, pp. 754–756.

    Google Scholar 

  33. Christi, Y. (1994) Analysis of cell cultures in stirred bioreactors: observations on scale up. Process Biochem., 28, 511–517.

    Article  Google Scholar 

  34. Griffiths, J.B. and Racher, A.J. (1994) Cultural and physiological factors affecting expression of recombinant proteins. Cytotechnology, 15, 3–9.

    Article  PubMed  CAS  Google Scholar 

  35. Racher, A.J, Stacey, G.N., Bolton, B. J. et al. (1994) Genetic and biochemical analysis of a murine hybridoma long-term continuous culture, in Animal Cell Technology; Products for Today Prospects for Tomorrow (eds R.E. Spier, J.B. Griffiths and W. Berthold), Butterworth-Heinemann, Oxford, pp. 69–75.

    Google Scholar 

  36. Griffiths, J.B. (1986) Scaling up of animal cell cultures, in Animal Cell Culture: A Practical Approach (ed. I.R. Freshney), IRL Press, UK, pp. 533–569.

    Google Scholar 

  37. Prokop, A. and Rosenberg, M.T. (1989) Bioreactors for mammalian cell culture. Adv. Biochem. Biotechnol., 39, 29.

    CAS  Google Scholar 

  38. Van Brunt, T. (1986) Immobilised mammalian cells: the gentle way to productivity. Biol. Technol., 4, 505.

    Google Scholar 

  39. FDA (1991). Biotechnology Inspection Guide, Division of Field Investigations (HFC-130), Office of Regional Operations, Office of Regulatory Affairs, US Food and Drug Administration, PDA Inc., Baltimore.

    Google Scholar 

  40. MCA (1997) Rules and Guidance for Pharmaceutical Manufacturers and Distributors 1997. The Stationery Office, London.

    Google Scholar 

  41. Klehr, D., Maass, K. and Bode, J. (1991) Scaffold attached region from the human interferon ß domain can be used to enhance the stable expression of genes under the control of various promoters. Biochemistry, 30, 1264–1270.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Doyle, A., Stacey, G. (1998). Quality control and validation. In: Stacey, G., Doyle, A., Hambleton, P. (eds) Safety in Cell and Tissue Culture. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4916-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4916-7_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6061-5

  • Online ISBN: 978-94-011-4916-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics