Advertisement

Arthropod phylogeny: taxonomic congruence, total evidence and conditional combination approaches to morphological and molecular data sets

  • J. Zrzavý
  • V. Hypša
  • M. Vlášková
Part of the The Systematics Association Special Volume Series book series (SASS, volume 55)

Abstract

Both molecular and morphological data can be used for constructing branching diagrams indicative of phylogeny. The question ‘Is it feasible to combine different data sets into a single data matrix in phylogenetic reconstruction?’ will be discussed in this paper, using the phylogeny of extant arthropods as an illustration. Three possible answers to this question have been formulated (reviewed in Huelsenback et al, 1996) — the data should be combined either never (taxonomic congruence), or always (total evidence), or under some circumstances (conditional combination).

Keywords

Cladistic Analysis Total Evidence Strict Consensus Tree Molecular Tree Morphological Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abele, L.G., Kim, W. and Felgenhauer, B.E. (1989) Molecular evidence for inclusion of the phylum Pentastomida in the Crustacea. Molecular Biology and Evolution, 6, 685–91.Google Scholar
  2. Abele, L.G., Spears, T, Kim, W. and Applegate, M. (1992) Phylogeny of selected maxillopodan and other crustacean taxa based on 18S ribosomal nucleotide sequences: a preliminary analysis. Acta Zoologica, 73, 373–82.CrossRefGoogle Scholar
  3. Adoutte, A. and Philippe, H. (1993) The major lines of metazoan evolution: summary of traditional evidence and lessons from ribosomal RNA sequence analysis, in Comparative Molecular Neurobiology (ed. Y. Pichon), Birkhäuser, Basel, pp. 1–30.CrossRefGoogle Scholar
  4. Anderson, D.T. (1973) Embryology and Phylogeny in Annelids and Arthropods, Pergamon Press, Oxford.Google Scholar
  5. Averof, M. and Akam, M. (1995a) Hox genes and the diversification of insect and crustacean body plans. Nature, 376, 420–3.PubMedCrossRefGoogle Scholar
  6. Averof, M. and Akam, M., (1995b) Insect-crustacean relationships: insights from comparative developmental and molecular studies. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 347, 293–303.CrossRefGoogle Scholar
  7. Ballard, J.W.O., Olsen, G.J., Faith, D.P., Odgers, W.A., Rowell, D.M. and Atkinson, P.W. (1992) Evidence from 12S ribosomal RNA sequences that Onychophora are modified arthropods. Science, 258, 1345–8.PubMedCrossRefGoogle Scholar
  8. Bergström, J. (1979) Morphology of fossil arthropods as a guide to phylogenetic relationships, in Arthropod Phylogeny (ed. A.P. Gupta), Van Nostrand Reinhold Co., New York, pp. 3–56.Google Scholar
  9. Boore, J.L., Collins, T.M., Stanton, D., Daehler, L.L. and Brown, W.M. (1995) Deducing the pattern of arthropod phylogeny from mitochondrial DNA rearrangements. Nature, 376, 163–5.PubMedCrossRefGoogle Scholar
  10. Boudreaux, H.B. (1979) Arthropod Phylogeny, with Special Reference to Insects, J. Wiley and Sons, New York.Google Scholar
  11. Briggs, D.E.G., Fortey, R.A. and Wills, M.A. (1992) Morphological disparity in the Cambrian. Science, 256, 1670–3.PubMedCrossRefGoogle Scholar
  12. Budd, G. (1993) A Cambrian gilled lobopod from Greenland. Nature, 364, 709–11.CrossRefGoogle Scholar
  13. Cisne, J. L. (1974) Trilobites and the origin of arthropods. Science, 186, 13–18.PubMedCrossRefGoogle Scholar
  14. de Queiroz, A. (1993) For consensus (sometimes). Systematic Biology, 42, 368–72.Google Scholar
  15. Dohle, W. (1988) Myriapoda and the Ancestry of Insects. C.H. Brookes Memorial Lecture (1986), Manchester Polytechnic, Manchester.Google Scholar
  16. Eernisse D.J. and Kluge A.G. (1993) Taxonomic congruence versus total evidence, and amniote phylogeny inferred from fossils, molecules, and morphology. Molecular Biology and Evolution, 10, 1170–95.PubMedGoogle Scholar
  17. Eernisse, D.J., Albert, J.S. and Anderson, F.E. (1992) Annelida and Arthropoda are not sister taxa — a phylogenetic analysis of spiralian metazoan morphology. Systematic Biology, 41, 305–30.Google Scholar
  18. Farris, J.S. (1969) A successive approximations approach to character weighting. Systematic Zoology, 18, 374–85.CrossRefGoogle Scholar
  19. Farris, J.S. (1988) Hennig86 version 1.5 manual, software and MSDOS program, Published by the author, New York.Google Scholar
  20. Field, K.G., Olsen, G.J., Lane, D.J., Giovannoni, S.J., Ghiselin, M.T., Raff, E.C., Pace, N.R. and Raff, R.A. (1988) Molecular phylogeny of the animal kingdom. Science, 239, 748–53.PubMedCrossRefGoogle Scholar
  21. Friedrich, M. and Tautz, D. (1995) Ribosomal DNA phylogeny of the major extant arthropod classes and the evolution of myriapods. Nature, 376, 165–7.PubMedCrossRefGoogle Scholar
  22. Giribet, G., Carranza, S., Baguñá, J., Riutort, M. and Ribera, C. (1996) First molecular evidence for the existence of a Tardigrada + Arthropoda clade. Molecular Biology and Evolution, 13, 76– 84.PubMedCrossRefGoogle Scholar
  23. Higgins, D. G., Bleasby, A. J. and Fuchs, R. (1992) CLUSTAL V: improved software for multiple sequence alignment. CABIOS, 8, 189–91.PubMedGoogle Scholar
  24. Huelsenbeck, J.P., Bull, J.J. and Cunningham, C.W. (1996) Combining data in phylogenetic analysis. Trends in Ecology and Evolution, 11, 152–8.PubMedCrossRefGoogle Scholar
  25. Huys, R., Boxshall, G.A. and Lincoln, R.J. (1993) The tantulocaridan life cycle: the circle closed? Journal of Crustacean Biology, 13, 432–42.CrossRefGoogle Scholar
  26. Kraus, O. and Kraus M. (1994) Phylogenetic system of the Tracheata (Mandibulata): on ‘Myriapoda’-Insecta interrelationships, phylogenetic age and primary ecological niches. Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg, NF, 34, 5–31.Google Scholar
  27. Kristensen, N.P. (1995) Forty years’ insect phylogenetic systematics: Hennig’s ‘Kritische Bemerkungen…’ and subsequent developments. Zoologische Beiträge, NF, 36, 83–124.Google Scholar
  28. Kukalová-Peck, J. (1991) Fossil history and evolution of hexapod structures, in The Insects of Australia, vol. 1 (ed. I.D. Naumann and CSIRO), CSIRO, Melbourne University Press, Carlton, pp. 141–79.Google Scholar
  29. Manton, S.M. (1977) The Arthropoda: Habits, Functional Morphology, and Evolution, Clarendon Press, Oxford.Google Scholar
  30. Nielsen, C. (1995) Animal Evolution: Interrelationships of the Living Phyla, Oxford University Press, Oxford.Google Scholar
  31. Novacek, M.J. (1992) Fossils as critical data for phylogeny, in Extinction and Phylogeny (eds M.J. Novacek and Q.D. Wheeler), Columbia University Press, New York, pp. 46–88.Google Scholar
  32. Osorio, D. and Bacon, J.P. (1994) A good eye for arthropod evolution. BioEssays, 16, 419–23.PubMedCrossRefGoogle Scholar
  33. Osorio, D., Averof, M. and Bacon, J.P. (1995) Arthropod evolution: great brains, beautiful bodies. Trends in Ecology and Evolution, 10, 449–54.PubMedCrossRefGoogle Scholar
  34. Panganiban, G., Nagy, L. and Carroll, S.B. (1995) The role of the Distal-less gene in the development and evolution of insect limbs. Current Biology, 4, 671–5.CrossRefGoogle Scholar
  35. Paulus, H.F. (1979) Eye structure and the monophyly of Arthropoda, in Arthropod Phylogeny (ed. A.P. Gupta), Van Nostrand Reinhold Co., New York, pp. 299–383.Google Scholar
  36. Popadić, A., Rusch, D., Peterson, M., Rogers, B.T. and Kaufman, T.C. (1996) Origin of the mandibulate mandible. Nature, 380, 395.CrossRefGoogle Scholar
  37. Schram, F.R. (1986) Crustacea, Oxford University Press, New York.Google Scholar
  38. Schram, F.R. and Hoeg, J.T. (1995) New frontiers in barnacle evolution, in New Frontiers in Barnacle Evolution (eds F.R. Schram and J.T. Høeg), A.A. Balkema, Rotterdam, pp. 297–312.Google Scholar
  39. Sharov, A.G. (1966) Basic Arthropodan Stock with Special Reference to Insects, Pergamon Press, Oxford.Google Scholar
  40. Storch, V. and Jamieson, B.G.M. (1992) Further spermatological evidence for including the Pentastomida (tongue worms) in the Crustacea. International journal of Parasitology, 22, 95–108.CrossRefGoogle Scholar
  41. Štys, P. and Zrzavý, J. (1994) Phylogeny and classification of extant Arthropoda: review of hypotheses and nomenclature. European Journal of Entomology, 91, 257–75.Google Scholar
  42. Telford, M.J. and Thomas, R.H. (1995) Demise of the Atelocerata? Nature, 376, 123–4.CrossRefGoogle Scholar
  43. Turbeville, J.M., Pfeifer, D.M., Field, K.G. and Raff, R.A. (1991) The phylogenetic status of arthropods, as inferred from 18S rRNA sequences. Molecular Biology and Evolution, 8, 669–86.PubMedGoogle Scholar
  44. Wägele, J.W. (1993) Rejection of the ‘Uniramia’ hypothesis and implications of the Mandibulata concept. Zoologische Jahrbücher, Abteilung für Systematik, 120, 253–88.Google Scholar
  45. Wägele, J.W. and Stanjek, G. (1995) Arthropod phylogeny inferred from partial 12S rRNA revisited — monophyly of the Tracheata depends on sequence alignment. Journal of Zoological Systematics and Evolutionary Research, 33, 75–80.Google Scholar
  46. Walossek, D. and Müller, K.J. (1994) Pentastomid parasites from the lower Paleozoic of Sweden. Transactions of the Royal Society of Edinburgh — Earth Sciences, 85, 1–37.CrossRefGoogle Scholar
  47. Weygoldt, P. (1986) Arthropod interrelationships — the phylogenetic-systematic approach. Zeitschrift für Zoologische, Systematik und Evolutionsforschung, 24, 19–35.CrossRefGoogle Scholar
  48. Wheeler, W.C. (1994) Sequence alignment, parameter sensitivity and the phylogenetic analysis of molecular data. Systematic Biology, 44, 321–31.Google Scholar
  49. Wheeler, W.C. and Gladstein, D.S. (1992) MALIGN, program and documentation, American Museum of Natural History.Google Scholar
  50. Wheeler, W.C., Cartwright, P. and Hayashi, C.Y. (1993) Arthropod phylogeny: a combined approach. Cladistics, 9, 1–39.CrossRefGoogle Scholar
  51. Whitington, P.M., Meier, T. and King, P. (1991) Segmentation, neurogenesis and formation of early axonal pathways in the centipede, Ethmostigmus rubripes (Brandt). Roux’s Archive for Developmental Biology, 199, 349–63.CrossRefGoogle Scholar
  52. Wills, M.A., Briggs, D.E.G. and Fortey, R.A. (1994) Disparity as an evolutionary index: a comparison of Cambrian and Recent arthropods. Paleobiology, 20, 93–130.Google Scholar
  53. Wills, M.A., Briggs, D.E.G., Fortey, R.A. and Wilkinson, M. (1995) The significance of fossils in understanding arthropod evolution. Verhandlungen der Deutschen Zoologischen Gesellschaft, 88, 203–15.Google Scholar
  54. Winnepenninckx, B., Backeljau, T., Mackey, L.Y., Brooks, J.M., De Wachter, R., Kumar, S. and Garey, J.R. (1995) 18S rRNA data indicate that Aschelminthes are polyphyletic in origin and consist of at least three distinct clades. Molecular Biology and Evolution, 12, 1132–7.PubMedGoogle Scholar
  55. Zrzavý, J. and Štys, P. (1997) The basic body plan of arthropods: insights from evolutionary morphology and developmental biology. Journal of Evolutionary Biology, 10, 353–67.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • J. Zrzavý
    • 1
  • V. Hypša
    • 1
  • M. Vlášková
    • 1
  1. 1.Faculty of Biological SciencesČeské BudějoviceCzech Republic

Personalised recommendations