Arthropod Relationships pp 43-56 | Cite as
Arthropod and annelid relationships re-examined
- 8 Citations
- 608 Downloads
Abstract
The prevailing view of two centuries recognizes annelid worms as the sister taxon of arthropods. However, recent studies have suggested that there are other animal groups nearer to annelids; under this view arthropods do not belong to the clade, Eutrochozoa Ghiselin, 1988, comprising annelids, molluscs, and several other protostome phyla. This recent work is based on both morphology (Eernisse et al., 1992; Schram and Ellis, 1995) and molecular sequence comparisons; the latter is based on several gene regions, including 18S rRNA (Field et al., 1988; Ghiselin, 1988; Patterson, 1989; Lake, 1990; Turbeville et al., 1991; Ruitort et al., 1993; Valentine, 1994; Halanych et al., 1995; Winnepenninckx et al., 1995a,b; Giribet et al., 1996), mitochondrial 12S rRNA (Ballard et al., 1992), and the two largest subunits of RNA polymerase II (Sidow and Thomas, 1994). However, Rouse and Fauchald (1995) continued to find support for the conventional grouping of annelids and arthropods as sister taxa, termed Articulata Cuvier, 1817, in their cladistic analysis based on 13 morphological characters.
Keywords
Sister Taxon Linnean Society Taxonomic Sampling Bilaterian Animal Annelid PolychaetePreview
Unable to display preview. Download preview PDF.
References
- Abele, L.G., Kim, W. and Felgenhauer, B.E. (1989) Molecular evidence for inclusion of the phylum Pentastomida in the Crustacea. Molecular Biology and Evolution, 6, 685–91.Google Scholar
- Adoutte, A. and Philippe, H. (1993) The major lines of metazoan evolution: summary of traditional evidence and lessons from ribosomal RNA sequence analysis, in Comparative Molecular Neurobiology (ed Y. Pichon), Birkhäuser Verlag, Basel, Switzerland, pp. 1–30.CrossRefGoogle Scholar
- Anderson, D.T. (1981) Origins and relationships among the animal phyla. Proceedings of the Linnean Society of New South Wales, 106, 151–66.Google Scholar
- Ballard, J.W.O., Olsen, G.J., Faith, D.P., Odgers, W.A., Rowell, D.M. and Atkinson, P.W. (1992) Evidence from 12S ribosomal RNA sequences that onychophorans are modified arthropods. Science, 258, 1345–8.PubMedCrossRefGoogle Scholar
- Barnes, R.D. (1987) Invertebrate Zoology, 5th edn, Saunders College Publishing, Orlando.Google Scholar
- Boore, J.L., Collins, T.M., Stanton, D., Daehler, L.L. and Brown, W.M. (1995) Deducing the pattern of arthropod phylogeny from mitochondrial DNA rearrangements. Nature, 376, 163–5.PubMedCrossRefGoogle Scholar
- Boudreaux, H.P. (1979) Arthropod Phylogeny with Special Reference to Insects, Wiley, Inc., New York.Google Scholar
- Bowring, S.A., Grotzinger, J.P., Isachsen, C.E., Knoll, A.H., Pelechaty, S.M. and Kolosov, P. (1993) Calibrating rates of Early Cambrian evolution. Science, 261, 1293–8.PubMedCrossRefGoogle Scholar
- Briggs, D.E.G., Fortey, R.A. and Wills, M.A. (1993) How big was the Cambrian evolutionary explosion? A taxonomic and morphological comparison of Cambrian and Recent arthropods, in Evolutionary Patterns and Processes (eds D.R. Lees and D. Edwards), Linnean Society Symposium Series, 14, 33–44.Google Scholar
- Brusca, R.C. and Brusca, G.J. (1990) Invertebrates, Sinauer Associates, Sunderland, Massachusetts.Google Scholar
- Budd, G.E. (1996a) The morphology of Opabinia regalis and the reconstruction of the arthropod stem group. Lethaia, 29, 1–14.CrossRefGoogle Scholar
- Budd, G.E. (1996b) Progress and problems in arthropod phylogeny. Trends in Ecology and Evolution, 11, 356–8.PubMedCrossRefGoogle Scholar
- Carlson, S.J. (1995) Phylogenetic relationships among extant brachiopods. Cladistics, 11, 131–97.CrossRefGoogle Scholar
- Carroll, S.B. (1995) Homeotic genes and the evolution of arthropods and chordates. Nature, 376, 479–85.PubMedCrossRefGoogle Scholar
- Conway Morris, S. (1995) Nailing the lophophorates. Nature, 375, 365–6.CrossRefGoogle Scholar
- Conway Morris, S., Cohen, B.L., Gawthrop, A.B., Cavalier-Smith, T. and Winnepenninckx, B. (1996) Lophophorate phylogeny. Science, 272, 282.CrossRefGoogle Scholar
- Cuvier, G. (1817) Le règne animal distribué d’après son organisation, pour servir de base à l’histoire naturelle des animaux et d’introduction à l’anatomie comparée, Vol. 2, Paris.CrossRefGoogle Scholar
- Davidson, E.H., Peterson, K.J. and Cameron, R.A. (1995) Origin of bilaterian body plans: Evolution of developmental regulatory mechanisms. Science, 270, 1319–25.PubMedCrossRefGoogle Scholar
- De Robertis, E.M. and Sasai, Y. (1996) A common plan for dorsoventral patterning in Bilateria. Nature, 380, 37–40.PubMedCrossRefGoogle Scholar
- de Queiroz, K. and Gauthier, J. (1990) Phylogeny as a central principle in taxonomy: phylogenetic definitions of taxon names. Systematic Zoology, 39, 307–22.CrossRefGoogle Scholar
- de Queiroz, K. and Gauthier, J. (1992) Phylogenetic taxonomy. Annual Review of Ecology and Systematics, 23, 449–80.CrossRefGoogle Scholar
- Dewel, R.A. and W.C. Dewel (1996) The brain of Echiniscus viridissimus Peterfi, 1956 (Heterotardigrada): a key to understanding the phylogenetic position of tardigrades and the evolution of the arthropod head. Zoological Society of the Linnean Society, 116, 35–49.CrossRefGoogle Scholar
- Donoghue, M.J., Olmstead, R.G., Smith, J.F. and Palmer, J.D. (1992) Phylogenetic relationships of Dipscales based on rbcL sequences. Annals of the Missouri Botanical Garden, 79, 249–65.CrossRefGoogle Scholar
- Doyle, J.A. and Donoghue, M.J. (1987) The importance of fossils in elucidating seed plant phylogeny and macroevolution. Review of Paleobotany and Palynology, 50, 63–95.CrossRefGoogle Scholar
- Eernisse, D.J. (1992) DNA Translator and Aligner: HyperCard utilities to aid phylogenetic analysis. Computer Applications in the Biosciences, 8, 177–84.PubMedGoogle Scholar
- Eernisse, D.J. (1995) DNA Stacks, Version 1.1, Software package available from the author.Google Scholar
- Eernisse, D. J. and Kluge, A.G. (1993) Taxonomic congruence versus total evidence, and the phylogeny of amniotes inferred from fossils, molecules and morphology. Molecular Biology and Evolution, 10, 1170–95.PubMedGoogle Scholar
- Eernisse, D. J., Albert, J. S. and Anderson, F.E. (1992) Annelida and Arthropoda are not sister taxa: a phylogenetic analysis of spiralian metazoan morphology. Systematic Biology, 41, 305–30.Google Scholar
- Felsenstein, J. (1988) Phylogenies from molecular sequences: inference and reliability. Annual Review of Genetics, 22, 521–65.PubMedCrossRefGoogle Scholar
- Field, K.G., Olsen, G.J., Lane, D.J., Giovannoni, S.J., Ghiselin, M.T., Raff, E.C., Pace, N.R. and Raff, RA. (1988) Molecular phylogeny of the animal kingdom. Science, 239, 748–53.PubMedCrossRefGoogle Scholar
- Fortey, RA., Briggs, D.E.G. and Wills, MA. (1996) The Cambrian evolutionary ‘explosion’: decoupling cladogenesis from morphological disparity. Biological Journal of the Linnean Society, 57, 13–33.Google Scholar
- Friedrich, M. and Tautz, D. (1995) Ribosomal DNA phylogeny of the major extant arthropod classes and the evolution of myri-apods. Nature, 376, 165–7.PubMedCrossRefGoogle Scholar
- Fryer, G. (1996) Reflections on arthropod evolution. Biological Journal of the Linnean Society, 58, 1–55.CrossRefGoogle Scholar
- Garey, J.R., Krotec, M., Nelson, D.R. and Brooks, J. (1996a) Molecular analysis supports a tardigrade-arthropod association. Invertebrate Biology, 115, 79–88.CrossRefGoogle Scholar
- Garey, J.R., Near, T.J., Nonnemacher, M.R. and Nadler, S.A. (1996b) Molecular evidence for Acanthocephala as a sub-taxon of Rotifera. Journal of Molecular Evolution, 43, 287–92.PubMedCrossRefGoogle Scholar
- Gauthier, J., Kluge, A.G. and Rose, T. (1988) Amniote phylogeny and the importance of fossils. Cladistics, 4, 105–209.CrossRefGoogle Scholar
- Ghiselin, M.T. (1988) The origin of molluscs in the light of molecular evidence. Oxford Surveys in Evolutionary Biology, 5, 66–95.Google Scholar
- Giribet, G, Carranza, S., Baguñâ, J., Riutort, M. and Ribera, C. (1996) First molecular evidence for the existence of a Tardigrada + Arthropoda clade. Molecular Biology and Evolution, 13, 76–84.PubMedCrossRefGoogle Scholar
- Halanych, K.M. (1996a) Response to Conway Morris et al. Science, 272, 283.PubMedCrossRefGoogle Scholar
- Halanych, K.M. (1996b) Testing hypotheses of chaetognath origins: long branches revealed by 18S ribosomal DNA. Systematic Biology, 45, 223–46.CrossRefGoogle Scholar
- Halanych, K.M., Bachelier, J.D., Aguinaldo, A.M., Liva, S.M., Hillis, D.M. and Lake, JA. (1995) Evidence from 18S ribosomal DNA that the lophophorates are protostome animals, Science, 267, 1641–3.PubMedCrossRefGoogle Scholar
- Haszprunar, G. (1996) The Mollusca: Coelomate turbellarians or mesenchymate annelids?, in Origin and Evolutionary Radiation of the Mollusca (ed J. Taylor), Centenary Symposium of the Malacological Society of London, Oxford University Press, New York, pp. 3–28.Google Scholar
- Hillis, D.M. (1995) Approaches for assessing phylogenetic accuracy. Systematic Biology, 44, 3–16.Google Scholar
- Hillis, D.M. (1996) Inferring complex phylogenies. Nature, 383, 130–1.PubMedCrossRefGoogle Scholar
- Hillis, D.M. and Dixon, M.T. (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Quarterly Review of Biology, 66,411–53.PubMedCrossRefGoogle Scholar
- Katayama, T., Yamamoto, M., Wada, H. and Satoh, N. (1993) Phylogenetic position of acoel turbellarians inferred from partial 18S rDNA sequences. Zoological Sciences, 10, 529–36.Google Scholar
- Katayama, T., Wada, H, Furuya, H., Satoh, N. and Yamamoto, M. (1995) Phylogenetic position of the dicyemid Mesozoa inferred from 18S rDNA sequences. Biological Bulletin, 189, 81–90.PubMedCrossRefGoogle Scholar
- Kim, J. (1996) General inconsistency conditions for maximum parsimony: effects of branch lengths and increasing numbers of taxa. Systematic Biology, 45, 363–74.CrossRefGoogle Scholar
- Kjer, K.M. (1995) Use of rRNA secondary structure in phylogenetic studies to identify homologous positions: an example of alignment and data presentation from the frogs. Molecular Phylogenetics and Evolution, 4, 314–30.PubMedCrossRefGoogle Scholar
- Lake, JA. (1990) Origin of the metazoa. Proceedings of the National Academy of Science, USA, 87, 763–6.CrossRefGoogle Scholar
- Lecointre, G, Philippe, H., Van Le, H.L. and Le Guyader, H. (1993) Species sampling has a major impact on phylogenetic inference. Molecular Phylogenetics and Evolution, 2, 205–24.PubMedCrossRefGoogle Scholar
- Lecointre, G, Philippe, H, Van Le, H. L. and Le Guyader, H. (1994) How many nucleotides are required to resolve a phylogenetic problem? The use of a new statistical method applicable to available sequences. Molecular Phylogenetics and Evolution, 3, 292–309.PubMedCrossRefGoogle Scholar
- Maddison, D.R. (1991) The discovery and importance of multiple islands of most-parsimonious trees. Systematic Zoology, 40, 315–28.CrossRefGoogle Scholar
- Maddison, W.P., Donoghue, M.J. and Maddison, D.R. (1984) Outgroup analysis and parsimony. Systematic Zoology, 33, 83–103.CrossRefGoogle Scholar
- Meglitsch, P. and Schräm, F.R. (1991) Invertebrate Zoology, 3rd edn, Oxford University Press, New York.Google Scholar
- Mishler, B.D., Bremer, K., Humphries, C.J. and Churchill, S.P. (1988) The use of nucleic acid sequence data in phylogenetic reconstruction, Taxon, 37, 391–5.CrossRefGoogle Scholar
- Moon, S. Y. and Kim, W. (1996) Phylogenetic position of the Tardigrada based on the 18S ribosomal RNA gene sequences. Zoological Journal of the Linnean Society, 116, 61–9.CrossRefGoogle Scholar
- Neefs, J.-M., Van de Peer, Y., Hendriks, L. and De Wächter, R. (1990) Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Research, 18, 2237–317.PubMedCrossRefGoogle Scholar
- Nielsen, C. (1995) Animal Evolution: Interrelationships of the Living Phyla, Oxford University Press, Oxford.Google Scholar
- Nielsen, C, Scharff, N. and Eibye-Jacobsen, D. (1996) Cladistic analyses of the animal kingdom. Biological Journal of the Linnean Society, 57, 385–40.CrossRefGoogle Scholar
- Patterson, C. (1989) Phylogenetic relationships of major groups: conclusions and prospects, in The Hierarchy of Life (eds B. Fernholm, K. Bremer, and H. Jörnvall), Elsevier Science Publishers, B.V. (Biomedical Division), Amsterdam, pp. 471–88.Google Scholar
- Pawlowski, J., Montoya-Burgos, J.-L, Fahrni, J.F., Wüest, J. and Zaninetti, L. (1996) Origin of the Mesozoa inferred from 18S rRNA gene sequences. Molecular Biology and Evolution, 13, 1128–32.PubMedCrossRefGoogle Scholar
- Philippe, H., Chenuil, A. and Adoutte, A. (1994) Can the Cambrian explosion be inferred through molecular phylogeny? Development 1994, Supplement, 15–25.Google Scholar
- Pleijel, F. (1995) On character coding for phylogeny reconstruction. Cladistics, 11, 309–15.CrossRefGoogle Scholar
- Popadić, A., Rusch, D., Peterson, M., Rogers, B.T. and Kaufman, T.C. (1996) Origin of the arthropod mandible. Nature, 380, 395.CrossRefGoogle Scholar
- Raff, R.A., Marshall, CR. and Turbeville, J.M. (1994) Using DNA sequences to unravel the Cambrian radiation of the animal phyla. Annual Review of Ecology and Systematics, 25, 351–75.CrossRefGoogle Scholar
- Rouse, G.W. and Fauchald, K. (1995) The articulation of annelids. Zoologica Scripta, 24, 269–301.CrossRefGoogle Scholar
- Ruitort, M., Field, K.G., Raff, R.A. and Baguñá, J. (1993) 18S rRNA sequences and phylogeny of Platyhelminthes. Biochemical Systematics and Ecology, 21, 71–7.CrossRefGoogle Scholar
- Sanderson, M.J. (1996) How many taxa must be sampled to identify the root node of a large clade? Systematic Biology, 45, 168–73.CrossRefGoogle Scholar
- Schram, F.R. (1991) Cladistic analysis of metazoan phyla and the placement of fossil problematica, in The Early Evolution of Metazoa and the Significance of Problematic Taxa (eds A. Simonetta and S. Conway Morris), Cambridge University Press, Cambridge, pp. 35–46.Google Scholar
- Schram, F.R. and Ellis, W.N. (1995) Metazoan relationships: a rebuttal. Cladistics, 10, 331–7.CrossRefGoogle Scholar
- Sidow, A. and Thomas, W.K. (1994) A molecular evolutionary framework for eukaryotic model organisms. Current Biology, 4, 596–603.PubMedCrossRefGoogle Scholar
- Sogin, M.L. (1991) Early evolution and the origin of eukaryotes. Current Biology, 1, 457–63.Google Scholar
- Sullivan, J. (1996) Combining data with different distributions of among-site rate variation. Systematic Biology, 45, 375–80.CrossRefGoogle Scholar
- Swofford, D.L. and Begle, D.P. (1993) PAUP: Phylogenetic Analysis Using Parsimony, version 3.1. User’s manual for computer program by D.L. Swofford. Illinois Natural History Survey, Champaign, Illinois.Google Scholar
- Swofford, D.L., Olsen, G.J, Waddell, P.J. and Hillis, D.M. (1996) Phylogenetic inference, in Molecular Systematics, 2nd edn (eds D.M. Hillis, C. Moritz, and B.K. Mable), Sinauer, Sunderland, Massachusetts, pp. 407–514.Google Scholar
- Telford, M.J. and Thomas, R.H. (1995) Demise of the Atelocerata? Nature, 376, 123–4.CrossRefGoogle Scholar
- Turbeville, J.M, Pfeiffer, M, Field, K.G. and Raff, R.A. (1991) The phylogenetic status of arthropods, as inferred from 18S rRNA sequences. Molecular Biology and Evolution, 8, 669–86.PubMedGoogle Scholar
- Turbeville, J.M, Field, K.G. and Raff, R.A. (1992) Phylogenetic position of phylum Nemertini, inferred from 18S rRNA sequences: molecular data as a test of morphological character homology. Molecular Biology and Evolution, 9, 235–49.PubMedGoogle Scholar
- Turbeville, J.M, Schulz, J.R. and Raff, R.A. (1994) Deuterostome phylogeny and the sister group of the chordates: evidence from molecules and morphology. Molecular Biology and Evolution, 11, 648–55.PubMedGoogle Scholar
- Valentine, J.W. (1989) Bilaterians of the Precambrian-Cambrian transition and the annelid-arthropod relationship. Proceedings of the National Academy of Science, USA, 86, 2272–5.CrossRefGoogle Scholar
- Valentine, J.W. (1994) Late Precambrian bilaterians: grades and clades. Proceedings of the National Academy of Science, USA, 91, 6751–7.CrossRefGoogle Scholar
- Valentine, J.W. (1996) Developmental evolution of metazoan body plans: the fossil evidence. Developmental Biology, 173, 373–81.PubMedCrossRefGoogle Scholar
- Waggoner, B.M. (1996) Phylogenetic hypotheses of the relationships of arthropods to Precambrian and Cambrian problematic fossil taxa. Systematic Biology, 45, 190–222.CrossRefGoogle Scholar
- Wallace, R.L, Ricci, C. and Melone, G. (1996) A cladistic analysis of pseudocoelomate (aschelminth) morphology. Invertebrate Biology, 115, 104–12.CrossRefGoogle Scholar
- Wheeler, W.C. (1995) Sequence alignment, parameter sensitivity, and the phylogenetic analysis of molecular data. Systematic Biology, 44, 321–31.Google Scholar
- Wheeler, W.C, Cartwright, P. and Hayashi, C.Y. (1993) Arthropod phylogeny: a combined approach. Cladistics, 9, 1–39.CrossRefGoogle Scholar
- Willmer, P. (1990) Invertebrate Relationships: Patterns in Animal Evolution, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
- Wingstrand, K.G. (1972) Comparative spermatology of a pentasto-mid, Raillietiella hemidactyli, and a branchiuran crustacean, Argulus foliaceus, with a discussion of a pentastomid relationships. Kongelige Danske Videnskabernes Selskab Biologiske Shifter, 19, 1–72.Google Scholar
- Winnepenninckx, B, Backeljau, T. and De Wächter, R. (1995a) Phylogeny of protostome worms derived from 18S rRNA sequences, Molecular Biology and Evolution, 12, 641–9.PubMedGoogle Scholar
- Winnepenninckx, B, Backeljau, T, Mackey, L.Y, Brooks, J.M, De Wächter, R, Kumar, S. and Garey, J.R. (1995b) 18S rRNA data indicate that aschelminthes are polyphyletic in origin and consist of at least three distinct clades. Molecular Biology and Evolution, 12, 1132–7.PubMedGoogle Scholar
- Wray, G.A, Levinton, J.S. and Shapiro, L.H. (1996) Molecular evidence for deep Precambrian divergences among metazoan phyla. Science, 274, 568–73.CrossRefGoogle Scholar