Arthropod and annelid relationships re-examined

Part of the The Systematics Association Special Volume Series book series (SASS, volume 55)


The prevailing view of two centuries recognizes annelid worms as the sister taxon of arthropods. However, recent studies have suggested that there are other animal groups nearer to annelids; under this view arthropods do not belong to the clade, Eutrochozoa Ghiselin, 1988, comprising annelids, molluscs, and several other protostome phyla. This recent work is based on both morphology (Eernisse et al., 1992; Schram and Ellis, 1995) and molecular sequence comparisons; the latter is based on several gene regions, including 18S rRNA (Field et al., 1988; Ghiselin, 1988; Patterson, 1989; Lake, 1990; Turbeville et al., 1991; Ruitort et al., 1993; Valentine, 1994; Halanych et al., 1995; Winnepenninckx et al., 1995a,b; Giribet et al., 1996), mitochondrial 12S rRNA (Ballard et al., 1992), and the two largest subunits of RNA polymerase II (Sidow and Thomas, 1994). However, Rouse and Fauchald (1995) continued to find support for the conventional grouping of annelids and arthropods as sister taxa, termed Articulata Cuvier, 1817, in their cladistic analysis based on 13 morphological characters.


Sister Taxon Linnean Society Taxonomic Sampling Bilaterian Animal Annelid Polychaete 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abele, L.G., Kim, W. and Felgenhauer, B.E. (1989) Molecular evidence for inclusion of the phylum Pentastomida in the Crustacea. Molecular Biology and Evolution, 6, 685–91.Google Scholar
  2. Adoutte, A. and Philippe, H. (1993) The major lines of metazoan evolution: summary of traditional evidence and lessons from ribosomal RNA sequence analysis, in Comparative Molecular Neurobiology (ed Y. Pichon), Birkhäuser Verlag, Basel, Switzerland, pp. 1–30.CrossRefGoogle Scholar
  3. Anderson, D.T. (1981) Origins and relationships among the animal phyla. Proceedings of the Linnean Society of New South Wales, 106, 151–66.Google Scholar
  4. Ballard, J.W.O., Olsen, G.J., Faith, D.P., Odgers, W.A., Rowell, D.M. and Atkinson, P.W. (1992) Evidence from 12S ribosomal RNA sequences that onychophorans are modified arthropods. Science, 258, 1345–8.PubMedCrossRefGoogle Scholar
  5. Barnes, R.D. (1987) Invertebrate Zoology, 5th edn, Saunders College Publishing, Orlando.Google Scholar
  6. Boore, J.L., Collins, T.M., Stanton, D., Daehler, L.L. and Brown, W.M. (1995) Deducing the pattern of arthropod phylogeny from mitochondrial DNA rearrangements. Nature, 376, 163–5.PubMedCrossRefGoogle Scholar
  7. Boudreaux, H.P. (1979) Arthropod Phylogeny with Special Reference to Insects, Wiley, Inc., New York.Google Scholar
  8. Bowring, S.A., Grotzinger, J.P., Isachsen, C.E., Knoll, A.H., Pelechaty, S.M. and Kolosov, P. (1993) Calibrating rates of Early Cambrian evolution. Science, 261, 1293–8.PubMedCrossRefGoogle Scholar
  9. Briggs, D.E.G., Fortey, R.A. and Wills, M.A. (1993) How big was the Cambrian evolutionary explosion? A taxonomic and morphological comparison of Cambrian and Recent arthropods, in Evolutionary Patterns and Processes (eds D.R. Lees and D. Edwards), Linnean Society Symposium Series, 14, 33–44.Google Scholar
  10. Brusca, R.C. and Brusca, G.J. (1990) Invertebrates, Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  11. Budd, G.E. (1996a) The morphology of Opabinia regalis and the reconstruction of the arthropod stem group. Lethaia, 29, 1–14.CrossRefGoogle Scholar
  12. Budd, G.E. (1996b) Progress and problems in arthropod phylogeny. Trends in Ecology and Evolution, 11, 356–8.PubMedCrossRefGoogle Scholar
  13. Carlson, S.J. (1995) Phylogenetic relationships among extant brachiopods. Cladistics, 11, 131–97.CrossRefGoogle Scholar
  14. Carroll, S.B. (1995) Homeotic genes and the evolution of arthropods and chordates. Nature, 376, 479–85.PubMedCrossRefGoogle Scholar
  15. Conway Morris, S. (1995) Nailing the lophophorates. Nature, 375, 365–6.CrossRefGoogle Scholar
  16. Conway Morris, S., Cohen, B.L., Gawthrop, A.B., Cavalier-Smith, T. and Winnepenninckx, B. (1996) Lophophorate phylogeny. Science, 272, 282.CrossRefGoogle Scholar
  17. Cuvier, G. (1817) Le règne animal distribué d’après son organisation, pour servir de base à l’histoire naturelle des animaux et d’introduction à l’anatomie comparée, Vol. 2, Paris.CrossRefGoogle Scholar
  18. Davidson, E.H., Peterson, K.J. and Cameron, R.A. (1995) Origin of bilaterian body plans: Evolution of developmental regulatory mechanisms. Science, 270, 1319–25.PubMedCrossRefGoogle Scholar
  19. De Robertis, E.M. and Sasai, Y. (1996) A common plan for dorsoventral patterning in Bilateria. Nature, 380, 37–40.PubMedCrossRefGoogle Scholar
  20. de Queiroz, K. and Gauthier, J. (1990) Phylogeny as a central principle in taxonomy: phylogenetic definitions of taxon names. Systematic Zoology, 39, 307–22.CrossRefGoogle Scholar
  21. de Queiroz, K. and Gauthier, J. (1992) Phylogenetic taxonomy. Annual Review of Ecology and Systematics, 23, 449–80.CrossRefGoogle Scholar
  22. Dewel, R.A. and W.C. Dewel (1996) The brain of Echiniscus viridissimus Peterfi, 1956 (Heterotardigrada): a key to understanding the phylogenetic position of tardigrades and the evolution of the arthropod head. Zoological Society of the Linnean Society, 116, 35–49.CrossRefGoogle Scholar
  23. Donoghue, M.J., Olmstead, R.G., Smith, J.F. and Palmer, J.D. (1992) Phylogenetic relationships of Dipscales based on rbcL sequences. Annals of the Missouri Botanical Garden, 79, 249–65.CrossRefGoogle Scholar
  24. Doyle, J.A. and Donoghue, M.J. (1987) The importance of fossils in elucidating seed plant phylogeny and macroevolution. Review of Paleobotany and Palynology, 50, 63–95.CrossRefGoogle Scholar
  25. Eernisse, D.J. (1992) DNA Translator and Aligner: HyperCard utilities to aid phylogenetic analysis. Computer Applications in the Biosciences, 8, 177–84.PubMedGoogle Scholar
  26. Eernisse, D.J. (1995) DNA Stacks, Version 1.1, Software package available from the author.Google Scholar
  27. Eernisse, D. J. and Kluge, A.G. (1993) Taxonomic congruence versus total evidence, and the phylogeny of amniotes inferred from fossils, molecules and morphology. Molecular Biology and Evolution, 10, 1170–95.PubMedGoogle Scholar
  28. Eernisse, D. J., Albert, J. S. and Anderson, F.E. (1992) Annelida and Arthropoda are not sister taxa: a phylogenetic analysis of spiralian metazoan morphology. Systematic Biology, 41, 305–30.Google Scholar
  29. Felsenstein, J. (1988) Phylogenies from molecular sequences: inference and reliability. Annual Review of Genetics, 22, 521–65.PubMedCrossRefGoogle Scholar
  30. Field, K.G., Olsen, G.J., Lane, D.J., Giovannoni, S.J., Ghiselin, M.T., Raff, E.C., Pace, N.R. and Raff, RA. (1988) Molecular phylogeny of the animal kingdom. Science, 239, 748–53.PubMedCrossRefGoogle Scholar
  31. Fortey, RA., Briggs, D.E.G. and Wills, MA. (1996) The Cambrian evolutionary ‘explosion’: decoupling cladogenesis from morphological disparity. Biological Journal of the Linnean Society, 57, 13–33.Google Scholar
  32. Friedrich, M. and Tautz, D. (1995) Ribosomal DNA phylogeny of the major extant arthropod classes and the evolution of myri-apods. Nature, 376, 165–7.PubMedCrossRefGoogle Scholar
  33. Fryer, G. (1996) Reflections on arthropod evolution. Biological Journal of the Linnean Society, 58, 1–55.CrossRefGoogle Scholar
  34. Garey, J.R., Krotec, M., Nelson, D.R. and Brooks, J. (1996a) Molecular analysis supports a tardigrade-arthropod association. Invertebrate Biology, 115, 79–88.CrossRefGoogle Scholar
  35. Garey, J.R., Near, T.J., Nonnemacher, M.R. and Nadler, S.A. (1996b) Molecular evidence for Acanthocephala as a sub-taxon of Rotifera. Journal of Molecular Evolution, 43, 287–92.PubMedCrossRefGoogle Scholar
  36. Gauthier, J., Kluge, A.G. and Rose, T. (1988) Amniote phylogeny and the importance of fossils. Cladistics, 4, 105–209.CrossRefGoogle Scholar
  37. Ghiselin, M.T. (1988) The origin of molluscs in the light of molecular evidence. Oxford Surveys in Evolutionary Biology, 5, 66–95.Google Scholar
  38. Giribet, G, Carranza, S., Baguñâ, J., Riutort, M. and Ribera, C. (1996) First molecular evidence for the existence of a Tardigrada + Arthropoda clade. Molecular Biology and Evolution, 13, 76–84.PubMedCrossRefGoogle Scholar
  39. Halanych, K.M. (1996a) Response to Conway Morris et al. Science, 272, 283.PubMedCrossRefGoogle Scholar
  40. Halanych, K.M. (1996b) Testing hypotheses of chaetognath origins: long branches revealed by 18S ribosomal DNA. Systematic Biology, 45, 223–46.CrossRefGoogle Scholar
  41. Halanych, K.M., Bachelier, J.D., Aguinaldo, A.M., Liva, S.M., Hillis, D.M. and Lake, JA. (1995) Evidence from 18S ribosomal DNA that the lophophorates are protostome animals, Science, 267, 1641–3.PubMedCrossRefGoogle Scholar
  42. Haszprunar, G. (1996) The Mollusca: Coelomate turbellarians or mesenchymate annelids?, in Origin and Evolutionary Radiation of the Mollusca (ed J. Taylor), Centenary Symposium of the Malacological Society of London, Oxford University Press, New York, pp. 3–28.Google Scholar
  43. Hillis, D.M. (1995) Approaches for assessing phylogenetic accuracy. Systematic Biology, 44, 3–16.Google Scholar
  44. Hillis, D.M. (1996) Inferring complex phylogenies. Nature, 383, 130–1.PubMedCrossRefGoogle Scholar
  45. Hillis, D.M. and Dixon, M.T. (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Quarterly Review of Biology, 66,411–53.PubMedCrossRefGoogle Scholar
  46. Katayama, T., Yamamoto, M., Wada, H. and Satoh, N. (1993) Phylogenetic position of acoel turbellarians inferred from partial 18S rDNA sequences. Zoological Sciences, 10, 529–36.Google Scholar
  47. Katayama, T., Wada, H, Furuya, H., Satoh, N. and Yamamoto, M. (1995) Phylogenetic position of the dicyemid Mesozoa inferred from 18S rDNA sequences. Biological Bulletin, 189, 81–90.PubMedCrossRefGoogle Scholar
  48. Kim, J. (1996) General inconsistency conditions for maximum parsimony: effects of branch lengths and increasing numbers of taxa. Systematic Biology, 45, 363–74.CrossRefGoogle Scholar
  49. Kjer, K.M. (1995) Use of rRNA secondary structure in phylogenetic studies to identify homologous positions: an example of alignment and data presentation from the frogs. Molecular Phylogenetics and Evolution, 4, 314–30.PubMedCrossRefGoogle Scholar
  50. Lake, JA. (1990) Origin of the metazoa. Proceedings of the National Academy of Science, USA, 87, 763–6.CrossRefGoogle Scholar
  51. Lecointre, G, Philippe, H., Van Le, H.L. and Le Guyader, H. (1993) Species sampling has a major impact on phylogenetic inference. Molecular Phylogenetics and Evolution, 2, 205–24.PubMedCrossRefGoogle Scholar
  52. Lecointre, G, Philippe, H, Van Le, H. L. and Le Guyader, H. (1994) How many nucleotides are required to resolve a phylogenetic problem? The use of a new statistical method applicable to available sequences. Molecular Phylogenetics and Evolution, 3, 292–309.PubMedCrossRefGoogle Scholar
  53. Maddison, D.R. (1991) The discovery and importance of multiple islands of most-parsimonious trees. Systematic Zoology, 40, 315–28.CrossRefGoogle Scholar
  54. Maddison, W.P., Donoghue, M.J. and Maddison, D.R. (1984) Outgroup analysis and parsimony. Systematic Zoology, 33, 83–103.CrossRefGoogle Scholar
  55. Meglitsch, P. and Schräm, F.R. (1991) Invertebrate Zoology, 3rd edn, Oxford University Press, New York.Google Scholar
  56. Mishler, B.D., Bremer, K., Humphries, C.J. and Churchill, S.P. (1988) The use of nucleic acid sequence data in phylogenetic reconstruction, Taxon, 37, 391–5.CrossRefGoogle Scholar
  57. Moon, S. Y. and Kim, W. (1996) Phylogenetic position of the Tardigrada based on the 18S ribosomal RNA gene sequences. Zoological Journal of the Linnean Society, 116, 61–9.CrossRefGoogle Scholar
  58. Neefs, J.-M., Van de Peer, Y., Hendriks, L. and De Wächter, R. (1990) Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Research, 18, 2237–317.PubMedCrossRefGoogle Scholar
  59. Nielsen, C. (1995) Animal Evolution: Interrelationships of the Living Phyla, Oxford University Press, Oxford.Google Scholar
  60. Nielsen, C, Scharff, N. and Eibye-Jacobsen, D. (1996) Cladistic analyses of the animal kingdom. Biological Journal of the Linnean Society, 57, 385–40.CrossRefGoogle Scholar
  61. Patterson, C. (1989) Phylogenetic relationships of major groups: conclusions and prospects, in The Hierarchy of Life (eds B. Fernholm, K. Bremer, and H. Jörnvall), Elsevier Science Publishers, B.V. (Biomedical Division), Amsterdam, pp. 471–88.Google Scholar
  62. Pawlowski, J., Montoya-Burgos, J.-L, Fahrni, J.F., Wüest, J. and Zaninetti, L. (1996) Origin of the Mesozoa inferred from 18S rRNA gene sequences. Molecular Biology and Evolution, 13, 1128–32.PubMedCrossRefGoogle Scholar
  63. Philippe, H., Chenuil, A. and Adoutte, A. (1994) Can the Cambrian explosion be inferred through molecular phylogeny? Development 1994, Supplement, 15–25.Google Scholar
  64. Pleijel, F. (1995) On character coding for phylogeny reconstruction. Cladistics, 11, 309–15.CrossRefGoogle Scholar
  65. Popadić, A., Rusch, D., Peterson, M., Rogers, B.T. and Kaufman, T.C. (1996) Origin of the arthropod mandible. Nature, 380, 395.CrossRefGoogle Scholar
  66. Raff, R.A., Marshall, CR. and Turbeville, J.M. (1994) Using DNA sequences to unravel the Cambrian radiation of the animal phyla. Annual Review of Ecology and Systematics, 25, 351–75.CrossRefGoogle Scholar
  67. Rouse, G.W. and Fauchald, K. (1995) The articulation of annelids. Zoologica Scripta, 24, 269–301.CrossRefGoogle Scholar
  68. Ruitort, M., Field, K.G., Raff, R.A. and Baguñá, J. (1993) 18S rRNA sequences and phylogeny of Platyhelminthes. Biochemical Systematics and Ecology, 21, 71–7.CrossRefGoogle Scholar
  69. Sanderson, M.J. (1996) How many taxa must be sampled to identify the root node of a large clade? Systematic Biology, 45, 168–73.CrossRefGoogle Scholar
  70. Schram, F.R. (1991) Cladistic analysis of metazoan phyla and the placement of fossil problematica, in The Early Evolution of Metazoa and the Significance of Problematic Taxa (eds A. Simonetta and S. Conway Morris), Cambridge University Press, Cambridge, pp. 35–46.Google Scholar
  71. Schram, F.R. and Ellis, W.N. (1995) Metazoan relationships: a rebuttal. Cladistics, 10, 331–7.CrossRefGoogle Scholar
  72. Sidow, A. and Thomas, W.K. (1994) A molecular evolutionary framework for eukaryotic model organisms. Current Biology, 4, 596–603.PubMedCrossRefGoogle Scholar
  73. Sogin, M.L. (1991) Early evolution and the origin of eukaryotes. Current Biology, 1, 457–63.Google Scholar
  74. Sullivan, J. (1996) Combining data with different distributions of among-site rate variation. Systematic Biology, 45, 375–80.CrossRefGoogle Scholar
  75. Swofford, D.L. and Begle, D.P. (1993) PAUP: Phylogenetic Analysis Using Parsimony, version 3.1. User’s manual for computer program by D.L. Swofford. Illinois Natural History Survey, Champaign, Illinois.Google Scholar
  76. Swofford, D.L., Olsen, G.J, Waddell, P.J. and Hillis, D.M. (1996) Phylogenetic inference, in Molecular Systematics, 2nd edn (eds D.M. Hillis, C. Moritz, and B.K. Mable), Sinauer, Sunderland, Massachusetts, pp. 407–514.Google Scholar
  77. Telford, M.J. and Thomas, R.H. (1995) Demise of the Atelocerata? Nature, 376, 123–4.CrossRefGoogle Scholar
  78. Turbeville, J.M, Pfeiffer, M, Field, K.G. and Raff, R.A. (1991) The phylogenetic status of arthropods, as inferred from 18S rRNA sequences. Molecular Biology and Evolution, 8, 669–86.PubMedGoogle Scholar
  79. Turbeville, J.M, Field, K.G. and Raff, R.A. (1992) Phylogenetic position of phylum Nemertini, inferred from 18S rRNA sequences: molecular data as a test of morphological character homology. Molecular Biology and Evolution, 9, 235–49.PubMedGoogle Scholar
  80. Turbeville, J.M, Schulz, J.R. and Raff, R.A. (1994) Deuterostome phylogeny and the sister group of the chordates: evidence from molecules and morphology. Molecular Biology and Evolution, 11, 648–55.PubMedGoogle Scholar
  81. Valentine, J.W. (1989) Bilaterians of the Precambrian-Cambrian transition and the annelid-arthropod relationship. Proceedings of the National Academy of Science, USA, 86, 2272–5.CrossRefGoogle Scholar
  82. Valentine, J.W. (1994) Late Precambrian bilaterians: grades and clades. Proceedings of the National Academy of Science, USA, 91, 6751–7.CrossRefGoogle Scholar
  83. Valentine, J.W. (1996) Developmental evolution of metazoan body plans: the fossil evidence. Developmental Biology, 173, 373–81.PubMedCrossRefGoogle Scholar
  84. Waggoner, B.M. (1996) Phylogenetic hypotheses of the relationships of arthropods to Precambrian and Cambrian problematic fossil taxa. Systematic Biology, 45, 190–222.CrossRefGoogle Scholar
  85. Wallace, R.L, Ricci, C. and Melone, G. (1996) A cladistic analysis of pseudocoelomate (aschelminth) morphology. Invertebrate Biology, 115, 104–12.CrossRefGoogle Scholar
  86. Wheeler, W.C. (1995) Sequence alignment, parameter sensitivity, and the phylogenetic analysis of molecular data. Systematic Biology, 44, 321–31.Google Scholar
  87. Wheeler, W.C, Cartwright, P. and Hayashi, C.Y. (1993) Arthropod phylogeny: a combined approach. Cladistics, 9, 1–39.CrossRefGoogle Scholar
  88. Willmer, P. (1990) Invertebrate Relationships: Patterns in Animal Evolution, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  89. Wingstrand, K.G. (1972) Comparative spermatology of a pentasto-mid, Raillietiella hemidactyli, and a branchiuran crustacean, Argulus foliaceus, with a discussion of a pentastomid relationships. Kongelige Danske Videnskabernes Selskab Biologiske Shifter, 19, 1–72.Google Scholar
  90. Winnepenninckx, B, Backeljau, T. and De Wächter, R. (1995a) Phylogeny of protostome worms derived from 18S rRNA sequences, Molecular Biology and Evolution, 12, 641–9.PubMedGoogle Scholar
  91. Winnepenninckx, B, Backeljau, T, Mackey, L.Y, Brooks, J.M, De Wächter, R, Kumar, S. and Garey, J.R. (1995b) 18S rRNA data indicate that aschelminthes are polyphyletic in origin and consist of at least three distinct clades. Molecular Biology and Evolution, 12, 1132–7.PubMedGoogle Scholar
  92. Wray, G.A, Levinton, J.S. and Shapiro, L.H. (1996) Molecular evidence for deep Precambrian divergences among metazoan phyla. Science, 274, 568–73.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  1. 1.Department of Biology MH282California State UniversityFullertonUSA

Personalised recommendations