Skip to main content

Arthropod and annelid relationships re-examined

  • Chapter
Arthropod Relationships

Part of the book series: The Systematics Association Special Volume Series ((SASS,volume 55))

Abstract

The prevailing view of two centuries recognizes annelid worms as the sister taxon of arthropods. However, recent studies have suggested that there are other animal groups nearer to annelids; under this view arthropods do not belong to the clade, Eutrochozoa Ghiselin, 1988, comprising annelids, molluscs, and several other protostome phyla. This recent work is based on both morphology (Eernisse et al., 1992; Schram and Ellis, 1995) and molecular sequence comparisons; the latter is based on several gene regions, including 18S rRNA (Field et al., 1988; Ghiselin, 1988; Patterson, 1989; Lake, 1990; Turbeville et al., 1991; Ruitort et al., 1993; Valentine, 1994; Halanych et al., 1995; Winnepenninckx et al., 1995a,b; Giribet et al., 1996), mitochondrial 12S rRNA (Ballard et al., 1992), and the two largest subunits of RNA polymerase II (Sidow and Thomas, 1994). However, Rouse and Fauchald (1995) continued to find support for the conventional grouping of annelids and arthropods as sister taxa, termed Articulata Cuvier, 1817, in their cladistic analysis based on 13 morphological characters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abele, L.G., Kim, W. and Felgenhauer, B.E. (1989) Molecular evidence for inclusion of the phylum Pentastomida in the Crustacea. Molecular Biology and Evolution, 6, 685–91.

    Google Scholar 

  • Adoutte, A. and Philippe, H. (1993) The major lines of metazoan evolution: summary of traditional evidence and lessons from ribosomal RNA sequence analysis, in Comparative Molecular Neurobiology (ed Y. Pichon), Birkhäuser Verlag, Basel, Switzerland, pp. 1–30.

    Chapter  Google Scholar 

  • Anderson, D.T. (1981) Origins and relationships among the animal phyla. Proceedings of the Linnean Society of New South Wales, 106, 151–66.

    Google Scholar 

  • Ballard, J.W.O., Olsen, G.J., Faith, D.P., Odgers, W.A., Rowell, D.M. and Atkinson, P.W. (1992) Evidence from 12S ribosomal RNA sequences that onychophorans are modified arthropods. Science, 258, 1345–8.

    Article  PubMed  CAS  Google Scholar 

  • Barnes, R.D. (1987) Invertebrate Zoology, 5th edn, Saunders College Publishing, Orlando.

    Google Scholar 

  • Boore, J.L., Collins, T.M., Stanton, D., Daehler, L.L. and Brown, W.M. (1995) Deducing the pattern of arthropod phylogeny from mitochondrial DNA rearrangements. Nature, 376, 163–5.

    Article  PubMed  CAS  Google Scholar 

  • Boudreaux, H.P. (1979) Arthropod Phylogeny with Special Reference to Insects, Wiley, Inc., New York.

    Google Scholar 

  • Bowring, S.A., Grotzinger, J.P., Isachsen, C.E., Knoll, A.H., Pelechaty, S.M. and Kolosov, P. (1993) Calibrating rates of Early Cambrian evolution. Science, 261, 1293–8.

    Article  PubMed  CAS  Google Scholar 

  • Briggs, D.E.G., Fortey, R.A. and Wills, M.A. (1993) How big was the Cambrian evolutionary explosion? A taxonomic and morphological comparison of Cambrian and Recent arthropods, in Evolutionary Patterns and Processes (eds D.R. Lees and D. Edwards), Linnean Society Symposium Series, 14, 33–44.

    Google Scholar 

  • Brusca, R.C. and Brusca, G.J. (1990) Invertebrates, Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Budd, G.E. (1996a) The morphology of Opabinia regalis and the reconstruction of the arthropod stem group. Lethaia, 29, 1–14.

    Article  Google Scholar 

  • Budd, G.E. (1996b) Progress and problems in arthropod phylogeny. Trends in Ecology and Evolution, 11, 356–8.

    Article  PubMed  CAS  Google Scholar 

  • Carlson, S.J. (1995) Phylogenetic relationships among extant brachiopods. Cladistics, 11, 131–97.

    Article  Google Scholar 

  • Carroll, S.B. (1995) Homeotic genes and the evolution of arthropods and chordates. Nature, 376, 479–85.

    Article  PubMed  CAS  Google Scholar 

  • Conway Morris, S. (1995) Nailing the lophophorates. Nature, 375, 365–6.

    Article  Google Scholar 

  • Conway Morris, S., Cohen, B.L., Gawthrop, A.B., Cavalier-Smith, T. and Winnepenninckx, B. (1996) Lophophorate phylogeny. Science, 272, 282.

    Article  Google Scholar 

  • Cuvier, G. (1817) Le règne animal distribué d’après son organisation, pour servir de base à l’histoire naturelle des animaux et d’introduction à l’anatomie comparée, Vol. 2, Paris.

    Book  Google Scholar 

  • Davidson, E.H., Peterson, K.J. and Cameron, R.A. (1995) Origin of bilaterian body plans: Evolution of developmental regulatory mechanisms. Science, 270, 1319–25.

    Article  PubMed  CAS  Google Scholar 

  • De Robertis, E.M. and Sasai, Y. (1996) A common plan for dorsoventral patterning in Bilateria. Nature, 380, 37–40.

    Article  PubMed  Google Scholar 

  • de Queiroz, K. and Gauthier, J. (1990) Phylogeny as a central principle in taxonomy: phylogenetic definitions of taxon names. Systematic Zoology, 39, 307–22.

    Article  Google Scholar 

  • de Queiroz, K. and Gauthier, J. (1992) Phylogenetic taxonomy. Annual Review of Ecology and Systematics, 23, 449–80.

    Article  Google Scholar 

  • Dewel, R.A. and W.C. Dewel (1996) The brain of Echiniscus viridissimus Peterfi, 1956 (Heterotardigrada): a key to understanding the phylogenetic position of tardigrades and the evolution of the arthropod head. Zoological Society of the Linnean Society, 116, 35–49.

    Article  Google Scholar 

  • Donoghue, M.J., Olmstead, R.G., Smith, J.F. and Palmer, J.D. (1992) Phylogenetic relationships of Dipscales based on rbcL sequences. Annals of the Missouri Botanical Garden, 79, 249–65.

    Article  Google Scholar 

  • Doyle, J.A. and Donoghue, M.J. (1987) The importance of fossils in elucidating seed plant phylogeny and macroevolution. Review of Paleobotany and Palynology, 50, 63–95.

    Article  Google Scholar 

  • Eernisse, D.J. (1992) DNA Translator and Aligner: HyperCard utilities to aid phylogenetic analysis. Computer Applications in the Biosciences, 8, 177–84.

    PubMed  CAS  Google Scholar 

  • Eernisse, D.J. (1995) DNA Stacks, Version 1.1, Software package available from the author.

    Google Scholar 

  • Eernisse, D. J. and Kluge, A.G. (1993) Taxonomic congruence versus total evidence, and the phylogeny of amniotes inferred from fossils, molecules and morphology. Molecular Biology and Evolution, 10, 1170–95.

    PubMed  CAS  Google Scholar 

  • Eernisse, D. J., Albert, J. S. and Anderson, F.E. (1992) Annelida and Arthropoda are not sister taxa: a phylogenetic analysis of spiralian metazoan morphology. Systematic Biology, 41, 305–30.

    Google Scholar 

  • Felsenstein, J. (1988) Phylogenies from molecular sequences: inference and reliability. Annual Review of Genetics, 22, 521–65.

    Article  PubMed  CAS  Google Scholar 

  • Field, K.G., Olsen, G.J., Lane, D.J., Giovannoni, S.J., Ghiselin, M.T., Raff, E.C., Pace, N.R. and Raff, RA. (1988) Molecular phylogeny of the animal kingdom. Science, 239, 748–53.

    Article  PubMed  CAS  Google Scholar 

  • Fortey, RA., Briggs, D.E.G. and Wills, MA. (1996) The Cambrian evolutionary ‘explosion’: decoupling cladogenesis from morphological disparity. Biological Journal of the Linnean Society, 57, 13–33.

    Google Scholar 

  • Friedrich, M. and Tautz, D. (1995) Ribosomal DNA phylogeny of the major extant arthropod classes and the evolution of myri-apods. Nature, 376, 165–7.

    Article  PubMed  CAS  Google Scholar 

  • Fryer, G. (1996) Reflections on arthropod evolution. Biological Journal of the Linnean Society, 58, 1–55.

    Article  Google Scholar 

  • Garey, J.R., Krotec, M., Nelson, D.R. and Brooks, J. (1996a) Molecular analysis supports a tardigrade-arthropod association. Invertebrate Biology, 115, 79–88.

    Article  Google Scholar 

  • Garey, J.R., Near, T.J., Nonnemacher, M.R. and Nadler, S.A. (1996b) Molecular evidence for Acanthocephala as a sub-taxon of Rotifera. Journal of Molecular Evolution, 43, 287–92.

    Article  PubMed  CAS  Google Scholar 

  • Gauthier, J., Kluge, A.G. and Rose, T. (1988) Amniote phylogeny and the importance of fossils. Cladistics, 4, 105–209.

    Article  Google Scholar 

  • Ghiselin, M.T. (1988) The origin of molluscs in the light of molecular evidence. Oxford Surveys in Evolutionary Biology, 5, 66–95.

    Google Scholar 

  • Giribet, G, Carranza, S., Baguñâ, J., Riutort, M. and Ribera, C. (1996) First molecular evidence for the existence of a Tardigrada + Arthropoda clade. Molecular Biology and Evolution, 13, 76–84.

    Article  PubMed  CAS  Google Scholar 

  • Halanych, K.M. (1996a) Response to Conway Morris et al. Science, 272, 283.

    Article  PubMed  CAS  Google Scholar 

  • Halanych, K.M. (1996b) Testing hypotheses of chaetognath origins: long branches revealed by 18S ribosomal DNA. Systematic Biology, 45, 223–46.

    Article  Google Scholar 

  • Halanych, K.M., Bachelier, J.D., Aguinaldo, A.M., Liva, S.M., Hillis, D.M. and Lake, JA. (1995) Evidence from 18S ribosomal DNA that the lophophorates are protostome animals, Science, 267, 1641–3.

    Article  PubMed  CAS  Google Scholar 

  • Haszprunar, G. (1996) The Mollusca: Coelomate turbellarians or mesenchymate annelids?, in Origin and Evolutionary Radiation of the Mollusca (ed J. Taylor), Centenary Symposium of the Malacological Society of London, Oxford University Press, New York, pp. 3–28.

    Google Scholar 

  • Hillis, D.M. (1995) Approaches for assessing phylogenetic accuracy. Systematic Biology, 44, 3–16.

    Google Scholar 

  • Hillis, D.M. (1996) Inferring complex phylogenies. Nature, 383, 130–1.

    Article  PubMed  CAS  Google Scholar 

  • Hillis, D.M. and Dixon, M.T. (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Quarterly Review of Biology, 66,411–53.

    Article  PubMed  CAS  Google Scholar 

  • Katayama, T., Yamamoto, M., Wada, H. and Satoh, N. (1993) Phylogenetic position of acoel turbellarians inferred from partial 18S rDNA sequences. Zoological Sciences, 10, 529–36.

    CAS  Google Scholar 

  • Katayama, T., Wada, H, Furuya, H., Satoh, N. and Yamamoto, M. (1995) Phylogenetic position of the dicyemid Mesozoa inferred from 18S rDNA sequences. Biological Bulletin, 189, 81–90.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J. (1996) General inconsistency conditions for maximum parsimony: effects of branch lengths and increasing numbers of taxa. Systematic Biology, 45, 363–74.

    Article  Google Scholar 

  • Kjer, K.M. (1995) Use of rRNA secondary structure in phylogenetic studies to identify homologous positions: an example of alignment and data presentation from the frogs. Molecular Phylogenetics and Evolution, 4, 314–30.

    Article  PubMed  CAS  Google Scholar 

  • Lake, JA. (1990) Origin of the metazoa. Proceedings of the National Academy of Science, USA, 87, 763–6.

    Article  CAS  Google Scholar 

  • Lecointre, G, Philippe, H., Van Le, H.L. and Le Guyader, H. (1993) Species sampling has a major impact on phylogenetic inference. Molecular Phylogenetics and Evolution, 2, 205–24.

    Article  PubMed  CAS  Google Scholar 

  • Lecointre, G, Philippe, H, Van Le, H. L. and Le Guyader, H. (1994) How many nucleotides are required to resolve a phylogenetic problem? The use of a new statistical method applicable to available sequences. Molecular Phylogenetics and Evolution, 3, 292–309.

    Article  PubMed  CAS  Google Scholar 

  • Maddison, D.R. (1991) The discovery and importance of multiple islands of most-parsimonious trees. Systematic Zoology, 40, 315–28.

    Article  Google Scholar 

  • Maddison, W.P., Donoghue, M.J. and Maddison, D.R. (1984) Outgroup analysis and parsimony. Systematic Zoology, 33, 83–103.

    Article  Google Scholar 

  • Meglitsch, P. and Schräm, F.R. (1991) Invertebrate Zoology, 3rd edn, Oxford University Press, New York.

    Google Scholar 

  • Mishler, B.D., Bremer, K., Humphries, C.J. and Churchill, S.P. (1988) The use of nucleic acid sequence data in phylogenetic reconstruction, Taxon, 37, 391–5.

    Article  Google Scholar 

  • Moon, S. Y. and Kim, W. (1996) Phylogenetic position of the Tardigrada based on the 18S ribosomal RNA gene sequences. Zoological Journal of the Linnean Society, 116, 61–9.

    Article  Google Scholar 

  • Neefs, J.-M., Van de Peer, Y., Hendriks, L. and De Wächter, R. (1990) Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Research, 18, 2237–317.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen, C. (1995) Animal Evolution: Interrelationships of the Living Phyla, Oxford University Press, Oxford.

    Google Scholar 

  • Nielsen, C, Scharff, N. and Eibye-Jacobsen, D. (1996) Cladistic analyses of the animal kingdom. Biological Journal of the Linnean Society, 57, 385–40.

    Article  Google Scholar 

  • Patterson, C. (1989) Phylogenetic relationships of major groups: conclusions and prospects, in The Hierarchy of Life (eds B. Fernholm, K. Bremer, and H. Jörnvall), Elsevier Science Publishers, B.V. (Biomedical Division), Amsterdam, pp. 471–88.

    Google Scholar 

  • Pawlowski, J., Montoya-Burgos, J.-L, Fahrni, J.F., Wüest, J. and Zaninetti, L. (1996) Origin of the Mesozoa inferred from 18S rRNA gene sequences. Molecular Biology and Evolution, 13, 1128–32.

    Article  PubMed  CAS  Google Scholar 

  • Philippe, H., Chenuil, A. and Adoutte, A. (1994) Can the Cambrian explosion be inferred through molecular phylogeny? Development 1994, Supplement, 15–25.

    Google Scholar 

  • Pleijel, F. (1995) On character coding for phylogeny reconstruction. Cladistics, 11, 309–15.

    Article  Google Scholar 

  • Popadić, A., Rusch, D., Peterson, M., Rogers, B.T. and Kaufman, T.C. (1996) Origin of the arthropod mandible. Nature, 380, 395.

    Article  Google Scholar 

  • Raff, R.A., Marshall, CR. and Turbeville, J.M. (1994) Using DNA sequences to unravel the Cambrian radiation of the animal phyla. Annual Review of Ecology and Systematics, 25, 351–75.

    Article  Google Scholar 

  • Rouse, G.W. and Fauchald, K. (1995) The articulation of annelids. Zoologica Scripta, 24, 269–301.

    Article  Google Scholar 

  • Ruitort, M., Field, K.G., Raff, R.A. and Baguñá, J. (1993) 18S rRNA sequences and phylogeny of Platyhelminthes. Biochemical Systematics and Ecology, 21, 71–7.

    Article  Google Scholar 

  • Sanderson, M.J. (1996) How many taxa must be sampled to identify the root node of a large clade? Systematic Biology, 45, 168–73.

    Article  Google Scholar 

  • Schram, F.R. (1991) Cladistic analysis of metazoan phyla and the placement of fossil problematica, in The Early Evolution of Metazoa and the Significance of Problematic Taxa (eds A. Simonetta and S. Conway Morris), Cambridge University Press, Cambridge, pp. 35–46.

    Google Scholar 

  • Schram, F.R. and Ellis, W.N. (1995) Metazoan relationships: a rebuttal. Cladistics, 10, 331–7.

    Article  Google Scholar 

  • Sidow, A. and Thomas, W.K. (1994) A molecular evolutionary framework for eukaryotic model organisms. Current Biology, 4, 596–603.

    Article  PubMed  CAS  Google Scholar 

  • Sogin, M.L. (1991) Early evolution and the origin of eukaryotes. Current Biology, 1, 457–63.

    CAS  Google Scholar 

  • Sullivan, J. (1996) Combining data with different distributions of among-site rate variation. Systematic Biology, 45, 375–80.

    Article  Google Scholar 

  • Swofford, D.L. and Begle, D.P. (1993) PAUP: Phylogenetic Analysis Using Parsimony, version 3.1. User’s manual for computer program by D.L. Swofford. Illinois Natural History Survey, Champaign, Illinois.

    Google Scholar 

  • Swofford, D.L., Olsen, G.J, Waddell, P.J. and Hillis, D.M. (1996) Phylogenetic inference, in Molecular Systematics, 2nd edn (eds D.M. Hillis, C. Moritz, and B.K. Mable), Sinauer, Sunderland, Massachusetts, pp. 407–514.

    Google Scholar 

  • Telford, M.J. and Thomas, R.H. (1995) Demise of the Atelocerata? Nature, 376, 123–4.

    Article  CAS  Google Scholar 

  • Turbeville, J.M, Pfeiffer, M, Field, K.G. and Raff, R.A. (1991) The phylogenetic status of arthropods, as inferred from 18S rRNA sequences. Molecular Biology and Evolution, 8, 669–86.

    PubMed  CAS  Google Scholar 

  • Turbeville, J.M, Field, K.G. and Raff, R.A. (1992) Phylogenetic position of phylum Nemertini, inferred from 18S rRNA sequences: molecular data as a test of morphological character homology. Molecular Biology and Evolution, 9, 235–49.

    PubMed  CAS  Google Scholar 

  • Turbeville, J.M, Schulz, J.R. and Raff, R.A. (1994) Deuterostome phylogeny and the sister group of the chordates: evidence from molecules and morphology. Molecular Biology and Evolution, 11, 648–55.

    PubMed  CAS  Google Scholar 

  • Valentine, J.W. (1989) Bilaterians of the Precambrian-Cambrian transition and the annelid-arthropod relationship. Proceedings of the National Academy of Science, USA, 86, 2272–5.

    Article  CAS  Google Scholar 

  • Valentine, J.W. (1994) Late Precambrian bilaterians: grades and clades. Proceedings of the National Academy of Science, USA, 91, 6751–7.

    Article  CAS  Google Scholar 

  • Valentine, J.W. (1996) Developmental evolution of metazoan body plans: the fossil evidence. Developmental Biology, 173, 373–81.

    Article  PubMed  CAS  Google Scholar 

  • Waggoner, B.M. (1996) Phylogenetic hypotheses of the relationships of arthropods to Precambrian and Cambrian problematic fossil taxa. Systematic Biology, 45, 190–222.

    Article  Google Scholar 

  • Wallace, R.L, Ricci, C. and Melone, G. (1996) A cladistic analysis of pseudocoelomate (aschelminth) morphology. Invertebrate Biology, 115, 104–12.

    Article  Google Scholar 

  • Wheeler, W.C. (1995) Sequence alignment, parameter sensitivity, and the phylogenetic analysis of molecular data. Systematic Biology, 44, 321–31.

    Google Scholar 

  • Wheeler, W.C, Cartwright, P. and Hayashi, C.Y. (1993) Arthropod phylogeny: a combined approach. Cladistics, 9, 1–39.

    Article  Google Scholar 

  • Willmer, P. (1990) Invertebrate Relationships: Patterns in Animal Evolution, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Wingstrand, K.G. (1972) Comparative spermatology of a pentasto-mid, Raillietiella hemidactyli, and a branchiuran crustacean, Argulus foliaceus, with a discussion of a pentastomid relationships. Kongelige Danske Videnskabernes Selskab Biologiske Shifter, 19, 1–72.

    Google Scholar 

  • Winnepenninckx, B, Backeljau, T. and De Wächter, R. (1995a) Phylogeny of protostome worms derived from 18S rRNA sequences, Molecular Biology and Evolution, 12, 641–9.

    PubMed  CAS  Google Scholar 

  • Winnepenninckx, B, Backeljau, T, Mackey, L.Y, Brooks, J.M, De Wächter, R, Kumar, S. and Garey, J.R. (1995b) 18S rRNA data indicate that aschelminthes are polyphyletic in origin and consist of at least three distinct clades. Molecular Biology and Evolution, 12, 1132–7.

    PubMed  CAS  Google Scholar 

  • Wray, G.A, Levinton, J.S. and Shapiro, L.H. (1996) Molecular evidence for deep Precambrian divergences among metazoan phyla. Science, 274, 568–73.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Eernisse, D.J. (1998). Arthropod and annelid relationships re-examined. In: Fortey, R.A., Thomas, R.H. (eds) Arthropod Relationships. The Systematics Association Special Volume Series, vol 55. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4904-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4904-4_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6057-8

  • Online ISBN: 978-94-011-4904-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics