Skip to main content

Evolutionary links between telomeres and transposable elements

  • Chapter

Part of the book series: Contemporary Issues in Genetics and Evolution ((CIGE,volume 6))

Abstract

Transposable elements are abundant in the genomes of higher organisms but are usually thought to affect cells only incidentally, by transposing in or near a gene and influencing its expression. Telomeres of Drosophila chromosomes are maintained by two non-LTR retrotransposons, HeT-A and TART. These are the first transposable elements with identified roles in chromosome structure. We suggest that these elements may be evolutionarily related to telomerase; in both cases an enzyme extends the end of a chromosome by adding DNA copied from an RNA template. the evolution of transposable elements from chromosomal replication mechanisms may have occurred multiple times, although in other organisms the new products have not replaced the endogenous telomerase, as they have in Drosophila. This is somewhat reminiscent of the oncogenes that have arisen from cellular genes. Perhaps the viruses that carry oncogenes have also arisen from cellular genetic systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arkhipova, I.R., N.V. Lyubomirskaya & Y.V. Ilyin, 1995. Drosophila Retrotransposons. R.G. Landes Company. Austin TX.

    Google Scholar 

  • Biessmann H., B. Kasravi, T. Bui, G. Fujiwara, L.E. Champion & J.M. Mason, 1994. Comparison of two active Het-A retroposons of Drosophila melanogaster. Chromosoma 103: 90–98.

    Article  PubMed  CAS  Google Scholar 

  • Biessmann, H., J.M. Mason, K. Ferry, M. d’Hulst. K. Valgeirs-dottir, K.L. Traverse & M.L. Pardue, 1990. Additon of telomereassociated HeT DNA sequences ‘heals’ broken chromosome ends in Drosophila. Cell 61: 663–673.

    Article  PubMed  CAS  Google Scholar 

  • Biessmann, H., K. Valgeirsdottir, A. Lofsky, C. Chin, B. Ginther, R.W. Levis & M.-L. Pardue, 1992. HeT-A, a transposable element specifically involved in ‘healing’ broken chromosome ends in Drosophila. Mol. Cell. Biol. 12: 3910–3918.

    PubMed  CAS  Google Scholar 

  • Blackburn, E.H., 1992. Telomerases. Annu. Rev. Biochem. 61: 113–129.

    Article  PubMed  CAS  Google Scholar 

  • Counter, C.M., A.A. Avilion, C.E. LeFeuvre, N.G. Stewart, C.W. Greider, C.B. Harley & S. Bacchetti, 1992. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11: 1921–1929.

    PubMed  CAS  Google Scholar 

  • Covey, S.N., 1986. Amino acid sequence homology in gag regions of reverse transcribing elements and the coat protein gene of cauliflower mosaic virus. Nucl. Acids Res. 14: 623–633.

    Article  PubMed  CAS  Google Scholar 

  • Craigie, R., 1992. Hotspots and warm spots: integration specificity of retroelements. Trends Genet. 8: 187–190.

    Article  PubMed  CAS  Google Scholar 

  • Craven, R.C., A. E. Leure-duPree, R.A. Weldon, Jr. & J.W. Wills, 1995. Genetic analysis of the major homology region of the Rous sarcoma virus Gag protein. J. Virol. 69: 4213–4227.

    PubMed  CAS  Google Scholar 

  • Danilevskaya, O.N. & G.E. Lapta, 1991. Long telomeres in the polytene chromosomes of Drosophila melanogaster are associated with amplification of subtelomeric repeat sequences. Genet. Sel. Evol. 23: 15–24.

    Article  Google Scholar 

  • Danilevskaya, O., A. Lofsky, E.V. Kurenova & M.L. Pardue, 1993. The Y chromosome of Drosophila melanogaster contains a distinctive subclass of HeT-A-related repeats. Genetics 134: 531–543.

    PubMed  CAS  Google Scholar 

  • Danilevskaya, O., F. Slot, M. Pavlova & M.L. Pardue, 1994. Structure of the Drosophila HeT-A transposon: a retrotransposon-like element forming telomeres. Chromosoma 103: 215–224.

    Article  PubMed  CAS  Google Scholar 

  • Danilevskaya, O.N., K. Lowenhaupt & M.L. Pardue, 1997. Conserved subfamilies of the Drosophila HeT-A telomere-specific retrotransposon. Genetics (in press).

    Google Scholar 

  • Danilevskaya, O.N., I.R. Arkhipova, K.L. Traverse & M.L. Pardue, 1997. Promoting in tandem; the promoter for the telomere transposon HeT-A and implications for evolution of retroviral LTRs Cell 88: 647–655.

    CAS  Google Scholar 

  • Devine, S.E. & J.D. Boeke, 1996. Integration of the yeast retrotransposon Ty1 is targeted to regions upstream of genes transcribed by RNA polymerase III. Genes Dev. 10: 620–633.

    Article  PubMed  CAS  Google Scholar 

  • Doolittle, R.F., D.-F. Feng, M.A. McClure & M.S. Johnson, 1990. Retrovirus phylogeny and evolution. Curr. Top. Microbiol. Immunol. 157: 1–18.

    Article  PubMed  CAS  Google Scholar 

  • Doolittle, W.F. & C. Sapienza, 1980. Selfish genes, the phenotype paradigm, and genome evolution. Nature 284: 601–603.

    Article  PubMed  CAS  Google Scholar 

  • Eickbush, T.H., 1994. Origin and evolutionary relationships of retroelements, pp. 121–157 in The Evolutionary Biology of Viruses, edited by S.S. Morse, Raven Press, Ltd., New York.

    Google Scholar 

  • Feng, Q., J.V. Moran, H.H. Kazazian, Jr. & J.D. Boeke, 1996. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87: 905–916.

    Article  PubMed  CAS  Google Scholar 

  • George, J.A., W.D. Burke & T.H. Eickbush, 1996. Analysis of the 5’ junctions of R2 insertions with the 28S gene: implications for non-LTR retrotransposition. Genetics 142: 853–863.

    PubMed  CAS  Google Scholar 

  • Hansen, L.J., D.L. Chalker, K.J. Orlinsky & S.B. Sandmeyer, 1992. Ty3 Gag3 and Pol3 genes encode the components of intracellular particles. J. Virol. 66: 1414–1424.

    PubMed  CAS  Google Scholar 

  • Hastie, N.D., M. Dempster, M.G. Dunlop, A.M. Thompson, D.K. Green & R.C. Allshire, 1990. Telomere reduction in human colorectal carcinoma and with aging. Nature 346: 866–868.

    Article  PubMed  CAS  Google Scholar 

  • Hutchison, C.A.III, S.C. Hardies, D.D. Loeb, W.R. Shehee & M.H. Edgell, 1989. LINES and related retroposons: long interspersed repeated sequences in the eukaryotic genome, pp. 593–617 in Mobile DNA, edited by D.E. Berg and M.M. Howe. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Jacks, T., 1990. Translational suppression in gene expression in retroviruses and retrotransposons. Curr. Top. Microbiol. Immunol. 157: 93–124.

    Article  PubMed  CAS  Google Scholar 

  • Kirchner, J., C.M. Connolly & S.B. Sandmeyer, 1995. Requirement of RNA polymerase III transcription factors for in vitro position-specific integration of a retroviruslike element. Science 267: 1488–1491.

    Article  PubMed  CAS  Google Scholar 

  • Ligner, J., T.R. Hughes, A. Shevchenko, M. Mann, V. Lundblad & T.R. Cech, 1997. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276: 561–567.

    Article  Google Scholar 

  • Luan, D.D., M.H. Korman, J.L. Jakubczak & T.H. Eickbush, 1993. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72: 595–605.

    Article  PubMed  CAS  Google Scholar 

  • McClean, C., A. Bucheton & D.J. Finnegan, 1993. The 5′-untranslated region of the I factor, a long interspersed nuclear element-like retrotransposon of Drosophila melanogaster, contains an internal promoter and sequences that regulate expression. Mol. Cell. Biol. 13: 1042–1050.

    Google Scholar 

  • McClintock, B., 1978. Mechanisms that rapidly reorganize the genome. Stadler Symp. 10: 25–47.

    Google Scholar 

  • Mammano, F., A. Ohagen, S. Höglund & H.G. Gottlinger, 1994. Role of the major homology region of human immunodeficiency virus type-1 in virion morphogenesis. J. Virol. 68: 4927–4936.

    PubMed  CAS  Google Scholar 

  • Meyerson, M., C.M. Counter, E.N. Eaton, L.W. Eilisen, P. Steiner, S.D. Caddie, L. Ziaugra, R.L. Beijersbergen, M.J. Davidoff, Q. Liu, S. Bacchetti, D.A. Haber & R.A. Weinberg, 1997. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortilization. Cell 90: 785–795.

    Article  PubMed  CAS  Google Scholar 

  • Mizrohki, L.J., S.G. Georgieva & Y.V. Ilyin, 1988. Jockey, a mobile Drosophila element similar to mammalian LINEs, is transcribed from the internal promoter by RNA polymerase II. Cell 54: 685–691.

    Article  Google Scholar 

  • Moore, J.K. & J.E. Haber, 1996. Capture of retrotransposon DNA at the sites of chromosomal double-strand breaks. Nature 383: 644–646.

    Article  PubMed  Google Scholar 

  • Muller, H.J. & I.H. Herskowitz, 1954. Concerning the healing of chromosome ends produced by breakage in Drosophila melanogaster. Am. Nat. 88: 177–208.

    Article  Google Scholar 

  • Muller, H.J., 1941. Induced mutations in Drosophila. Cold Spring Harbor Symp. Quant. Biol. 9: 151–167.

    Article  Google Scholar 

  • Nakamura, T.M., G.B. Morin, K.B. Chapman, S.L. Weinrich, W.H. Andrews, J. Ligner, C.B. Harley & T.R. Cech, 1997. Telomerase catalytic subunit homologues from fission yeast and human. Science 227: 955–959.

    Article  Google Scholar 

  • Okazaki, S., K. Tsuchida, H. Maekawa, H. Ishikawa & H. Fujiwara, 1993. Identification of a pentanucleotide telomeric sequence (TTAGG)n in the silkworm Bombyx mori and other insects. Mol. Cell. Biol. 13: 1424–1432.

    PubMed  CAS  Google Scholar 

  • Orgel, L.E. & F.H.C. Crick, 1980. Selfish DNA: the ultimate parasite. Nature 284: 604–607.

    Article  PubMed  CAS  Google Scholar 

  • Pardue, M.L., 1995. Drosophila telomeres: another way to end it all, pp. 339–370 in Telomeres, edited by C. Greider and E. Blackburn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Pardue, M.L., 1994. The ends and the middle; putting chromosomes together. Curr. Opin. Genet. Dev. 4: 845–850.

    Article  PubMed  CAS  Google Scholar 

  • Pardue, M.L., O.N. Danilevskaya, K. Lowenhaupt, F. Slot & K.L Traverse, 1996a. Drosophila telomeres: new views on chromosome evolution. Trends Genet. 12: 48–52

    Article  PubMed  CAS  Google Scholar 

  • Pardue, M.L., O.N. Danilevskaya, K. Lowenhaupt, J. Wong & K. Erby, 1996b. The gag coding region of the Drosophila telomeric retrotransposon, HeT-A, has an internal frame shift and a length polymorphic region. J. of Mol. Evol. 43: 572–583.

    Article  CAS  Google Scholar 

  • Schwarz-Sommer, Z., L. Leclercq, E. Gobel & H. Saedler, 1987. Cin4, an insert altering the structure of the Al gene in Zea mays, exhibits properties of non-viral retrotransposons. EMBO J 6: 3873–3880.

    PubMed  CAS  Google Scholar 

  • Sheen, F.-M. & R.W. Levis, 1994. Transposition of the LINE-like retrotransposon, TART, to Drosophila chromosome termini. Proc. Natl. Acad. Sci. 91: 12510–12514.

    Article  PubMed  CAS  Google Scholar 

  • Singer, M.S. & D.E. Gottschling, 1994. TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science 226: 404–409.

    Article  Google Scholar 

  • Summers, M.F., T.I. South, B. Kim & D.R. Hare, 1990. High-resolution structure of an HIV fingerlike domain via a new NMR-based distance geometry approach. Biochem. 29: 329–340.

    Article  CAS  Google Scholar 

  • Swergold, G.D., 1990. Identification, characterization, and cell specificity of a human LINE-1 promoter. Mol. Cell Biol. 10: 6718–6729.

    PubMed  CAS  Google Scholar 

  • Teng, S.-C., B. Kim & A. Gabriel, 1996. Retrotransposon reversetranscriptase-mediated repair of chromosomal breaks. Nature 383: 641–644.

    Article  PubMed  Google Scholar 

  • Wills, J.W. & R.C. Craven, 1992. Form, function, and use of retro-viral Gag proteins. Aids 5: 639–654.

    Article  Google Scholar 

  • Yu, G.L., J.D. Bradley, L.D. Attardi & E.H. Blackburn, 1990. In vivo alteration of telomere sequences and senescence caused by mutated Tetrehymena telomerase RNAs. Nature 344: 126–132.

    Article  PubMed  CAS  Google Scholar 

  • Zakian, V.A., 1989. Structure and function of telomeres. Annu. Rev. Genet. 23: 579–604.

    Article  PubMed  CAS  Google Scholar 

  • Zou, S., N. Ke, J.M. Kim & D.F. Voytas, 1996. The Saccharomyces retrotransposon Ty5 integrates preferentially into regions of silent chromatin at the telomeres and mating loci. Genes Dev. 10: 634–645.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Pierre Capy

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pardue, M.L., Danilevskaya, O.N., Traverse, K.L., Lowenhaupt, K. (1997). Evolutionary links between telomeres and transposable elements. In: Capy, P. (eds) Evolution and Impact of Transposable Elements. Contemporary Issues in Genetics and Evolution, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4898-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4898-6_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6054-7

  • Online ISBN: 978-94-011-4898-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics