Differential inhibition of COX-1 and COX-2 by NSAIDs: a summary of results obtained using various test systems

  • M. Pairet
  • J. Van Ryn
  • A. Mauz
  • H. Schierok
  • W. Diederen
  • D. Türck
  • G. Engelhardt


Since the discovery of a second isoenzyme of cyclooxygenase (COX), COX-21,2, it has been hypothesized that the anti-inflammatory effects of non-steroid anti-inflammatory drugs (NSAIDs) are achieved through a mechanism different from that underlying the often seen side-effects of these compounds, including disruption of cytoprotection of the stomach, toxic effects on the kidney and inhibition of platelet aggregation3. COX-1 is the constitutive isozyme found under physiological conditions in most tissues, a so-called ‘housekeeping’ enzyme, while COX-2 expression is induced, particularly during inflammatory processes4. It has been proposed that COX-2 inhibition is the relevant target for the anti-inflammatory effects of NSAIDs, whereas inhibition of COX-1 is responsible for their gastric and renal side-effects3,4. Most available NSAIDs block both COX-1 and COX-2 to a similar degree; however, newer compounds with selective inhibition of COX-2 should retain the anti-inflammatory activity of NSAIDs but have minimal gastro-intestinal side-effects.


Differential Inhibition Blood Assay Standard NSAID Sodium Naproxen Human Recombinant Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fu JY, Masferrer JL, Seibert K, Raz A, Needleman P. The induction and suppression of prostaglandin H2 synthase (cyclooxygenase) in human monocytes. J Biol Chem. 1990; 265: 16737–16740.PubMedGoogle Scholar
  2. 2.
    Xie W, Chipman JG, Robertson DL, Erikson RL, Simmons DL. Expression of a mitogen-responsive gene encoding prostaglandin synthase is regulated by mRNA splicing. Proc Natl Acad Sci USA. 1991; 88: 1692–1696.Google Scholar
  3. 3.
    Vane JR. Towards a better aspirin. Nature. 1994; 367: 215–216.PubMedCrossRefGoogle Scholar
  4. 4.
    Pairet M, Engelhardt G. Distinct isoforms (COX-1 and COX-2) of cyclooxygenase: possible physiological and therapeutic implications. Fund Clin Pharmacol. 1996; 10: 1–15.CrossRefGoogle Scholar
  5. 5.
    Euler US v. Zur Kenntnis der pharmakologischen Wirkungen von Nativsekreten und Extrakten männlicher accessorischer Geschlechtsdrüsen. Arch Exp Path Pharmakol. 1934; 975: 78–84.Google Scholar
  6. 6.
    Goldblatt MW. Properties of human seminal plasma. J Physiol (Lond). 1935; 84: 208–218.Google Scholar
  7. 7.
    Raz A, Wyche A, Siegel N, Needleman P. Regulation of fibroblast cyclooxygenase synthesis by interleukin-1. J Biol Chem. 1988; 263: 3022–3025.PubMedGoogle Scholar
  8. 8.
    Sirois J, Levy LO, Simmons DL, Richards JS. Characterization and hormonal regulation of the promoter of the rat prostaglandin endoperoxide synthase 2 gene in granulosa cells. J Biol Chem. 1993; 268: 7384–7385.Google Scholar
  9. 9.
    Slater D, Berger L, Newton R, Moore G, Bennett P. The relative abundance of type 1 to type 2 cyclo-oxygenase mRNA in human amnion at term. Biochem Biophys Res Commun. 1994; 198: 304–308.PubMedCrossRefGoogle Scholar
  10. 10.
    Futaki N, Takahashi S, Yokoyama M, Arai I, Higuchi S, Otomo S. NS-398, a new anti-inflammatory agent, selectively inhibits prostaglandin G/H synthase/cyclooxygenase (COX-2) activity in vitro. Prostaglandins. 1994; 47: 55–59.PubMedCrossRefGoogle Scholar
  11. 11.
    Ogino K, Harada Y, Kawamura M et al. An inhibitory effect of meloxicam, a novel non-steroidal anti-inflammatory drug, on COX-2. Jpn J Pharmacol. 1996; 71(Suppl. 1): 304P.Google Scholar
  12. 12.
    Vago T, Bevilacqua M, Norbiato G. Effect of nimesulide action time dependence on selectivity towards prostaglandin G/H synthase/cyclooxygenase activity. Arzneim Forsch/Drug Res. 1995; 45: 1096–1098.Google Scholar
  13. 13.
    Carbaza A, Cabré F, Rotllan E et al. Effect of COX-2 inhibitors on constitutive and inducible cyclooxygenase activity from different sources. Comparison with anti-inflammatory activity. Prostaglandins, Leukotrienes Essential Fatty Acids. 1996; 55(Suppl. 1): P93.Google Scholar
  14. 14.
    Klein T, Nüsing RM, Wiesenberg-Boettcher I, Ullrich V. Mechanistic studies on the selective inhibition of cyclooxygenase-2 by indanone derivatives. Biochem Pharmacol. 1996; 51: 285–290.PubMedCrossRefGoogle Scholar
  15. 15.
    Mitchell JA, Akarasereenont P, Thiemermann C, Flower RJ, Vane JR. Selectivity of non-steroidal anti-inflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. Proc Natl Acad Sci USA. 1994; 90: 11693–11697.CrossRefGoogle Scholar
  16. 16.
    Pairet M, Lidbury PS, Engelhardt G, Trummlitz G, Vane JR. Meloxicam: cyclooxygenase selectivity, anti-inflammatory activity and gastric and renal safety. Inflamm Res. 1995; 44(Suppl. 3): S274.Google Scholar
  17. 17.
    Klein T, Nüsing RM, Pfeilschifter J, Ullrich V. Selective inhibition of cyclooxygenase 2. Biochem Pharmacol. 1994; 48: 1605–1610.PubMedCrossRefGoogle Scholar
  18. 18.
    Engelhardt G, Bögel R, Schnitzler C, Utzman R. Meloxicam: influence on arachidonic acid metabolism: Part 1. In vitro findings. Biochem Pharmacol. 1996; 51: 21–28.PubMedCrossRefGoogle Scholar
  19. 19.
    Meade EA, Smith WL, DeWitt DL. Differential inhibition of prostaglandin endoperoxide synthase (cyclooxygenase) isozymes by aspirin and other non-steroidal anti-inflammatory drugs. J Biol Chem. 1993; 268: 6610–6614.PubMedGoogle Scholar
  20. 20.
    Seibert K, Zhang Y, Leahy K et al. Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc Natl Acad Sci USA. 1994; 91: 12013–12017.PubMedCrossRefGoogle Scholar
  21. 21.
    Huff R, Collins P, Kramer S et al. A structural feature of N-[2-8cyclohexyloxy)-4-nitrophenyl] methanesulfonamide (NS-398) that governs its selectivity and affinity for cyclooxygenase 2(COX2). Inflamm Res. 1995; 44(Suppl. 2): S145–S146.Google Scholar
  22. 22.
    Prasit P, Black WC, Chan CC et al. L-745,337: A selective cyclooxygenase-2 inhibitor. Med Chem Res. 1995; 5: 364–374.Google Scholar
  23. 23.
    Christoph T, Bodenteich A, Berg J. A whole cell assay system to test for specific COX inhibitors using the human monocytic cell line Mono Mac 6 and the human megacaryocytic cell line DAMI. Prostaglandins, Leukotrienes Essential Fatty Acids. 1996; 55(Suppl. 1): P3.Google Scholar
  24. 24.
    Barnett J, Chow J, Ives D et al. Purification, characterization and selective inhibition of human prostaglandin G/H synthase 1 and 2 expressed in the baculovirus system. Biochim Biophys Acta. 1994; 1209: 130–139.PubMedCrossRefGoogle Scholar
  25. 25.
    Copeland RA, Williams JM, Giannaras J et al. Mechanism of selective inhibition of the inducible form of prostaglandin G/H synthase. Proc Natl Acad Sci USA. 1994; 91: 11202–11206.PubMedCrossRefGoogle Scholar
  26. 26.
    Laneuville O, Breuer DK, Dewitt DL, Hla T, Funk CD, Smith WD. Differential inhibition of human prostaglandin endoperoxide H synthases-1 and-2 by non-steroidal anti-inflammatory drugs. J Pharmacol Exp Ther. 1994; 271: 927–934.PubMedGoogle Scholar
  27. 27.
    O’Neill GP, Mancini JA, Kargman S et al. Overexpression of human prostaglandin G/H synthase-1 and-2 by recombinant vaccinia virus: inhibition by non-steroidal anti-inflammatory drugs and biosynthesis of 15-hydroxyeicosatetraenoic acid. Mol Pharmacol. 1994; 45: 245–254.PubMedGoogle Scholar
  28. 28.
    Glaser K, Sung ML, O’Neill K et al. Etodolac selectively inhibits human prostaglandin G/H synthase 2 (PGHS-2) versus human PGHS-1. Eur J Pharmacol. 1995; 281: 107–111.PubMedCrossRefGoogle Scholar
  29. 29.
    Gierse JK, Hauser SD, Creely DP et al. Expression and selective inhibition of the constitutive and inducible forms of human cyclo-oxygenase. Biochem J. 1995; 305: 479–484.PubMedGoogle Scholar
  30. 30.
    Churchill L, Graham AG, Shih CK, Pauletti D, Farina PR, Grob PM. Selective inhibition of human cyclo-oxygenase-2 by meloxicam. Inflammopharmacol. 1996; 4: 125–135.CrossRefGoogle Scholar
  31. 31.
    Cromlish WA, Kennedy BP. Selective inhibition of cyclooxygenase-1 and-2 using intact insect cell assays. Biochem Pharmacol. 1996; 52: 1777–1785.PubMedCrossRefGoogle Scholar
  32. 32.
    Kargman S, Wong E, Greig GM et al. Mechanism of selective inhibition of human prostaglandin G/H synthase-1 and-2 in intact cells. Biochem Pharmacol. 1996; 52: 1113–1125.PubMedCrossRefGoogle Scholar
  33. 33.
    Tavares IA, Bennett A. Acemetacin and indomethacin: Differential inhibition of constitutive and inducible cyclo-oxygenases in human gastric mucosa and leucocytes. Int J Tiss Reac. 1993; 15: 49–53.Google Scholar
  34. 34.
    Tavares IA, Bishai PM, Bennett A. Activity of nimesulide on constitutive and inducible cyclooxygenases. Arzneim Forsch/Drug Res. 1995; 45: 1093–1095.Google Scholar
  35. 35.
    Grossman CJ, Wiseman J, Lucas FS, Trevethick MA, Birch PJ. Inhibition of constitutive and inducible cyclooxygenase activity in human platelets and mononuclear cells by NSAIDs and Cox 2 inhibitors. Inflamm Res. 1995; 44: 253–257.PubMedCrossRefGoogle Scholar
  36. 36.
    Patrignani P, Panara MR, Greco A et al. Biochemical and pharmacological characterization of the cyclooxygenase activity of human blood prostaglandin endoperoxide synthases. J Pharmacol Exp Ther. 1994; 271: 1705–1710.PubMedGoogle Scholar
  37. 37.
    Patrignani P, Panara MR, Santini G et al. Differential inhibition of cyclooxygenase activity of prostaglandin endoperoxide synthase isozymes in vitro and ex vivo in man. Prostaglandins, Leukotrienes Essential Fatty Acids. 1996; 55(Suppl.1): P115.Google Scholar
  38. 38.
    Young JM, Panah S, Satchawatcharaphong C, Cheung PS. Human whole blood assays for inhibition of prostaglandin G/H synthases-1 and-2 using A23187 and lipopolysaccharide stimulation of thromboxane B2 production. Inflamm Res. 1996; 45: 246–253.PubMedCrossRefGoogle Scholar
  39. 39.
    Brideau C, Kargman S, Liu S et al. A human whole blood assay for clinical evaluation of biochemical efficacy of cyclooxygenase inhibitors. Inflamm Res. 1996; 45: 68–74.PubMedCrossRefGoogle Scholar
  40. 40.
    Hayllar J, Bjarnason I. NSAIDs, Cox-2 inhibitors, and the gut. Lancet 1995; 346: 521–522.PubMedCrossRefGoogle Scholar
  41. 41.
    Rabasseda X. Nimesulide: a selective cyclooxygenase 2 inhibitor anti-inflammatory drug. Drugs of Today. 1996; 32(Suppl.D): 1–23.Google Scholar
  42. 42.
    Türck D, Bursch U, Heinzel G, Narjes HH. Clinical pharmacokinetics of meloxicam. Arzneim Forsch/Drug Res. 1997; 47: 253–258.Google Scholar
  43. 43.
    Theiss U, Timmer W, Wieckhorst G, Macciocchi A, Wetzelsberger N. Investigation into a possible drug-drug interaction between warfarin and nimesulide in healthy volunteers. Methods Find Exp Clin Pharmacol. 1993; 15: 629–635.Google Scholar
  44. 44.
    Davis R, Brodgen RN. Nimesulide. An update of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy. Drugs. 1994; 48: 431–454.PubMedCrossRefGoogle Scholar
  45. 45.
    Stichtenoth DO, Wagner B, Frölich JC. Effects of meloxicam and indomethacin on cyclooxygenase pathways in healthy volunteers. J Invest Med. 1997; in press.Google Scholar
  46. 46.
    Ward A, Brogden RN. Nimesulide: A preliminary review of its pharmacological properties and therapeutic efficacy in inflammation and pain states. Drugs. 1988; 36: 732–735.PubMedCrossRefGoogle Scholar
  47. 47.
    Cullen L, Kelly L, Coyle D, Forde R, Fitzgerald D. Selective suppression of COX-2 during chronic administration of nimesulide in man. William Harvey Research Conference: Selective COX-2 inhibitors: Pharmacology, clinical effects and therapeutic potential, Cannes 20th-21st March 1997; Abstract.Google Scholar
  48. 48.
    Brater DC. Profile of Etodolac: Pharmacokinetic evaluation in special populations. Clin Rheumatol. 1989; 8(Suppl.1): 25–35.PubMedCrossRefGoogle Scholar
  49. 49.
    Brocks DR, Jamali F. Etodolac Clinical Pharmacokinetics. Clin Pharmacokinet. 1994; 26: 259–274.PubMedCrossRefGoogle Scholar
  50. 50.
    Rane A, Oelz O, Frölich JC et al. Relationship between plasma concentrations of indomethacin and its effect on prostaglandin synthesis and platelet aggregation in man. Clin Pharmacol Ther. 1978; 23: 658–668.PubMedGoogle Scholar
  51. 51.
    Cronberg S, Wallmark E, Södeberg I. Effect on platelet aggregation of oral administration of 10 non-steroidal analgesics to humans. Scand J Haematol. 1984; 33: 155–159.PubMedCrossRefGoogle Scholar
  52. 52.
    Vinge E. Arachidonic acid-induced platelet aggregation and prostanoid formation in whole blood in relation to plasma concentration of indomethacin. Eur J Clin Pharmacol. 1985; 28: 163–169.PubMedCrossRefGoogle Scholar
  53. 53.
    Cox SR, Vanderlugt JT, Gumbleton TJ, Smith RB. Relationships between thromboxane production, platelet aggregability, and serum concentrations of ibuprofen and flurbiprofen. Clin Pharmacol Ther. 1987; 41: 510–521.PubMedCrossRefGoogle Scholar
  54. 54.
    Day RO, Francis H, Vial J, Geisslinger G, Williams KM. Naproxen concentrations in plasma and synovial fluid and effects on prostanoid concentrations. J Rheumatol. 1995; 22: 2295–2303.PubMedGoogle Scholar
  55. 55.
    Schafer AI. Effects of non-steroidal anti-inflammatory drugs on platelet function and systemic hemostasis. J Clin Pharmacol. 1995; 35: 209–219.PubMedGoogle Scholar
  56. 56.
    Ehrich E, Dallob A, Van Hecken A et al. Demonstration of selective COX-2 inhibition by MK-966 in humans. Arthritis Rheum. 1996; 39 (Suppl.): Abstract 328.Google Scholar
  57. 57.
    Faust TW, Redfern JS, Podolsky I, Lee E, Grundy SM, Feldman M. Effects of aspirin on gastric mucosal prostaglandin E2 and F content and on gastric mucosal injury in humans receiving fish oil or olive oil. Gastroenterology. 1990; 98: 586–591.PubMedGoogle Scholar
  58. 58.
    Taha AS, McLaughlin S, Holland PJ, Kelly RW, Sturrock RD, Russell RI. Effect on gastric and duodenal mucosal prostaglandins of repeated intake of therapeutic doses of naproxen and etodolac in rheumatoid arthritis. Ann Rheum Dis. 1990; 49: 354–358.PubMedCrossRefGoogle Scholar
  59. 59.
    Hudson N, Balsitis M, Filipowicz F, Hawkey C. Effect of Helicobacter pylori colonisation on gastric mucosal eicosanoid synthesis in patients taking non-steroidal anti-inflammatory drugs. Gut. 1993; 34: 748–751.PubMedCrossRefGoogle Scholar
  60. 60.
    Bertin P, Lapicque F, Payan E et al. Sodium naproxen: concentration and effect on inflammatory response mediators in human rheumatoid synovial fluid. Clin Pharmacol. 1994; 46: 3–7.Google Scholar
  61. 61.
    Frölich JC. A classification of NSAIDs according to the relative inhibition of cyclooxygenase isoenzymes. Trends in Pharmacol Sci. 1997; 18: 30–34.CrossRefGoogle Scholar
  62. 62.
    Brooks PM, Day RO. Nonsteroidal anti-inflammatory drugs — differences and similarities. N Engl J Med. 1991; 324: 1716–1725.PubMedCrossRefGoogle Scholar
  63. 63.
    Insel P. Analgesic-antipyretic and anti-inflammatory agents and drugs employed in the treatment of gout. In: Hardman JG, Limbird LE, Molinoff PB, Ruddon RW, Goodman Gilman A (eds). Goodman & Gilman’s Pharmacological Basis of Therapeutics. 9th edn; 1995: 617–657.Google Scholar
  64. 64.
    Lichtenstein D, Syngal S, Wolfe MM. Nonsteroidal anti-inflammatory drugs and the gastrointestinal tract. Arthritis Rheum. 1995; 38: 5–18.PubMedCrossRefGoogle Scholar
  65. 65.
    Mahmud T, Scott DL, Bjarnason I. A unifying hypothesis for the mechanism of NSAID related gastrointestinal toxicity. Ann Rheum Dis. 1996; 55: 211–213.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • M. Pairet
  • J. Van Ryn
  • A. Mauz
  • H. Schierok
  • W. Diederen
  • D. Türck
  • G. Engelhardt

There are no affiliations available

Personalised recommendations