Skip to main content

Part of the book series: Cellular Origin and Life in Extreme Habitats ((COLE,volume 1))

Abstract

Cyanobacteria (Cyanoprokaryota, Cyanophyta) and algae (to avoid duplication of terms, “algae” and “algal” in the text also includes Cyanobacteria, unless further specified), remain at the beginning of plant evolution. Due to their evolutionary antiquity they are widely adapted to all extremes related with changes in geological time. Although clearly defined studies are not abundant, because much of the research so far has concentrated on only a few species, prokaryotes are much better adapted to all environmental extremes than eukaryotes. In comparison with other ancient microorganisms, algae possess oxyphototrophic type of photosynthesis. The physiology of photosynthesis and its versatility under various extreme conditions is one of the most important features of their adaptation and algae thus form a considerable part of the primary production of the world ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, M (1976) Natural selection and the ecology of microbial adaptation in a biosphere, in M.R. Heinrich (ed.), Extreme Environments. Mechanisms of Microbial Adaptation, Academic Press, New York, San Francisco, London, pp. 3–56.

    Google Scholar 

  • Allison, E. M. and Walsby, A. E. (1985) J. exp. Bot. 32, 241–249.

    Article  Google Scholar 

  • Barber, J. and Andersson, B. (1994) Nature, 370, 31–34.

    Article  CAS  Google Scholar 

  • Bewley, J. D. (1979) Ann. Rev. Plant Physiol. 30, 195–238.

    Article  CAS  Google Scholar 

  • Bewley, J. D. and Krochko, J. E. (1982) in: O. L. Lange, P. S. Nobel, C. B. Osmond and H. Ziegler (eds.), Physiological plant ecology, II Encyclopedia Plant Physiology, Vol. 12B, Springer Berlin, pp. 325–378.

    Chapter  Google Scholar 

  • Blumwald, E., Wolosin, J. M. and Packer, L. (1984) Biochem. Biophys. Res. Comm. 122, 452–459.

    Article  PubMed  CAS  Google Scholar 

  • Boresh, K. (1921) Arch. Protistenkde, 44, 1–70.(1981)

    Google Scholar 

  • Borowitzka, L. J (1981) in L. G. Paleg, D. Aspinall (eds.), Physiology and Biochemistry of Drought Resistance in Plants, Academic Press, Melbourne, pp. 97–130.

    Google Scholar 

  • Borowitzka, L. J., Demmerle, S., Mackay, M. A. and Norton, R. S. (1980) Science 210, 650–651.

    Article  PubMed  CAS  Google Scholar 

  • Broady, P. A. (1986) in: J. Pickard (ed.), Antarctic Oasis. Terrestrial Environments and History of the Vestfold Hills, Academic Press, New York, Sydney, pp. 165–202.

    Google Scholar 

  • Brock, T. D. (1967) Science 158, 1012–1019.

    Article  PubMed  CAS  Google Scholar 

  • Brock, T. D. (1986) Thermophiles: General, Molecular and Applied Microbiology, Wiley & Sons, New York.

    Google Scholar 

  • Brown, A. D. (1976) Bact. Rev. 40, 803–846.

    PubMed  CAS  Google Scholar 

  • Cain, J. R., Paschal, D. C. and Hayden, C. M. (1980) Arch. Environm. Contam. and Toxicity 9, 9–16.

    Article  CAS  Google Scholar 

  • Castenholz, R. W. (1969) Bacteriological Reviewes, Vol. 33, No. 4, 476–504.

    CAS  Google Scholar 

  • Castenholz, R. W. (1973) in: N.G. Carr and B. A. Whitton (eds.), The Biology of Blue-green Algae, Blackwell, Oxford, pp. 379–414.

    Google Scholar 

  • Clarke, A. (1991) Cold adaptation. J. Zool., London, 225, 691–699.

    Article  Google Scholar 

  • Dainty, L. N. (1976) in: U. Luttge and M. G. Pitman (eds.), Encyclopedia of plant physiology, NS Vol. 2A, Springer, Berlin, pp. 168–201.

    Google Scholar 

  • De Winder, B. (1990) Ecophysiological strategies of drought tolerant phototrophic micro-organisms in dune soils, Academisch Profschrift, University of Amsterdam, pp. 95.

    Google Scholar 

  • Dexter-Dyer, B., Kretzschmar, M. and Krumbein, W. E. (1984) J. Geol. Soc. London 141, 251–262.

    Article  CAS  Google Scholar 

  • Drews, G. and Weckesser, J. (1982) in: N.G. Carr and B.A. Whitton (eds.), The biology of cyanobacteria. Blackwell Scient. Publ., Oxford, pp. 333–359.

    Google Scholar 

  • Elster, J. and Komárek, J. (1993) Arch. Hydrobiol./ Suppl. Algolog. Stud. 68, 107–122.

    Google Scholar 

  • Elster, J., Komárek, J. and Svoboda, J. (1994) Scripta Fac. Sci. Nat. Univ. Masaryk. Brun., 24, (Geography), 13–24.

    Google Scholar 

  • Elster, J. and Svoboda, J. (1996) Natl Inst. Polar Res., Spec. Issue, 51, 99–118.

    Google Scholar 

  • Elster, J., Svoboda, J., Komárek, J. and Marvan, P. (1997) Arch. Hydrobiol./ Suppl. Algolog. Stud. 85, 57–93.

    Google Scholar 

  • Engelmann, T. W. (1883) Bot. Z. 41, 1–13.

    Google Scholar 

  • Epstein, E. (1985) Plant Soil 89, 1–12.

    Article  Google Scholar 

  • Falkowski, P. G. and La Roche, J. (1991) J. Phycol. 27, 8–14.

    Article  Google Scholar 

  • Friedmann, E. I. (1986) Adv. Space Res. 6(12), 265–268.

    Article  PubMed  CAS  Google Scholar 

  • Friedmann, E. I. (1993) in: I.E. Friedman (ed.) Antarctic Microbiology, Wiley-Liss, New York, Chichester, Brisbane, Toronto, Singapore.

    Google Scholar 

  • Friedmann, E. I. (1993a) Giornale Botanico Italiano, 127(3), 369–376.

    Article  CAS  Google Scholar 

  • Friedmann, E. I. (1993b) in: R. Guerrero and C. Pedr≤s (eds.), Trends in Microbial Ecology, Spanish Society for Microbiology, pp. 9–12.

    Google Scholar 

  • Friedmann, E. I. and Galun, M. (1974) in: G.W. Brown (ed.), Desert Biology, Vol. 2, Academic Press, New York, pp. 165–212.

    Google Scholar 

  • Friedmann, E. I., Hua, M. and Ocampo-Friedmann, R. (1993) J. Brit. Implement. Soc, 46, 291–292.

    CAS  Google Scholar 

  • Friedmann, E. I. and Koriem, A. M. (1989) Adv. Space Res. 9(6), 167–172.

    Article  PubMed  CAS  Google Scholar 

  • Friedmann, E. I., McKay, C. P. and Nienow J. A. (1987) Polar Biology 7, 273–287.

    Article  PubMed  CAS  Google Scholar 

  • Friedmann, E. I. and Ocampo-Friedmann, R. (1984) Origin of Life 14, 771–776.

    Article  CAS  Google Scholar 

  • Fritsch, F. E. (1922) Ann. Bot. 36, 1–20.

    Google Scholar 

  • Fritsch, F. E. and Haines, F. M. (1923) Ann. Bot. 37, 683–728.

    Google Scholar 

  • Gaidukov, N. (1902) Abh. Preuss. Akad. Wiss. Berlin, No. 5, Quoted by Bogorad (1975).

    Google Scholar 

  • Galinski, E. A. and Tindall B. J. (1992) in: R.H. Herbert and R. J. Sharp (eds.), Molecular Biology and Biotechnology of Extremophiles, Blackie & Son, Glasgow, pp. 76–114.

    Chapter  Google Scholar 

  • Garcia-Pichel, F. and Castenholz, R. W. (1993) Appl. Environ. Microbiol. 59, 163–169.

    PubMed  CAS  Google Scholar 

  • Gessner, F. and Schramm, W. (1971) in: O. Kinne (ed.), Marine Ecology, Vol. 1 (2) Environmental Factors, London, Wiley Interscience, pp. 705–1083.

    Google Scholar 

  • Gerdes, G., Krumbein, W. E. and Holtkamp, E. (1985) in G. M. Friedman and W. E. Krumbein (eds.), Hypersaline Ecosystem. The Gavish Sabkha, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, pp. 219–238.

    Google Scholar 

  • Harder, R. (1923) Z. Bot. 15, 305–361.

    Google Scholar 

  • Harder, R. (1923) Z. Bot. 15, 305–360.

    Google Scholar 

  • Hoham, R. W. (1975) Arctic Alpine Res. 7, 13–24.

    Article  Google Scholar 

  • Karentz, D., Cleaver, J. E. and Mitchell, D. L. (1991) J. Phycol., 27, 326–341.

    Article  CAS  Google Scholar 

  • Kauss, H. (1977) in: D. H. Northcote (ed.), International Review of Biochemistry, Plant Biochemistry II, Baltimore, University Park Press, pp. 119–140.

    Google Scholar 

  • Kirk, J. T. O. (1983) in: Light and Photosynthesis Aquatic Ecosystems. Cambridge University Press.

    Google Scholar 

  • Kirk, J. T. O. (1994) Light and Photosynthesis in Aquatic Ecosystem. Cambridge University Press.

    Google Scholar 

  • Kirst, G. O. (1990) Annu. Rev. Plant Physiol. Plant Mol. Biol. 41, 21–53.

    Article  CAS  Google Scholar 

  • Kirst, G. O. and Wiencke, Ch. (1995) J. Phycol. 31, 181–199.

    Article  Google Scholar 

  • Lauchli, A. and Epstein, E. (1990) in: K. K. Tanji (ed.), Agricultural Salinity Assessment and Management, ASCE Manuals and Reports on Engineering No. 71, New York, Society of Civil Enginners, pp. 113–137.

    Google Scholar 

  • Lawlor, D.W. and Keys, A.J. (1993) in: L. Fowden, T. Mansfield and J. Stoddart (eds.), Plant Adaptation to Environmental Stress, Chapman & Hall, London, Glasgow, New York, Tokyo, Melbourne, Madras, pp. 85–106.

    Google Scholar 

  • Leland, H. V, Luoma, S. N and Fielden, J. M (1979) J Water Pollution Control Feder. 51, 1952-1616

    Google Scholar 

  • Lesser, M. P., Cullen, J. J. and Neale, P. J. (1994) J. Phycol. 30, 183–192.

    Article  CAS  Google Scholar 

  • Marre, E. (1962) Temperature, in R. A. Lewin (ed.), Physiology and Biochemistry of the Alage, Academic Press, New York, pp. 541–550.

    Google Scholar 

  • McKay, C. P. (1993) in: Friedmann, I. E. (ed.), Antarctic Microbiology, Wiley-Liss, New York, pp. 593–601.

    Google Scholar 

  • McKay, C. P., Friedmann, E. I., Wharton, R. A. and Davis, W. L. (1992) Adv. Space Res. 12(4), 231–238.

    Article  PubMed  CAS  Google Scholar 

  • Morita, R. Y. (1975) Bacteriol. Rev. 29, 144–167.

    Google Scholar 

  • Munns, R., Greenway, H. and Kirst, G. O. (1983) in: O. Lange, P. S. Nobel, C. B. Osmond and H. Ziegler, Encyclopedia of Plant Physiology (NS), Vol. 12C, Physiological Plant Ecology III, Springer, Berlin, Heidelberg, New York, pp. 59–135.

    Google Scholar 

  • Peschek, G. A, Wastyn, M., Molior, V., Kraushaar, H., Obinger, C., and Matthijs, H. C. P. (1989) in: Kotyk et al. (eds.), Highlights in modern biochemistry, Vol. I, VSP Int. Sc. Publ. Zeist, The Netherlands, pp. 893–902.

    Google Scholar 

  • Peterson, P. J. (1993) in: L. Fowden, T. Mansfield and J. Stoddart (eds.), Plant Adaptation to Environmental Stress, Chapman & Hall, London, Glasgow, New York, Tokyo, Melbourne, Madras, pp. 155–171.

    Google Scholar 

  • Peterson, G H., Healey, F. P. and Wagemann, R. (1984) Can. J. Fish. Aquat. Sci. 41, 974–979.

    Article  CAS  Google Scholar 

  • Pokorn, J., Elster, J. and Hammer, L. (1994) Arch. Hydrobiol., Suppl. Algolog. Stud. 73, 99–110.

    Google Scholar 

  • Post, A. and Larkum, A. W. D. (1993) Aquatic Botany 45, 231–243.

    Article  Google Scholar 

  • Rai, L. C., Gaur, J. P. and Kumar, H. D. (1981) Biol. Rev. 56,99–151.

    Article  CAS  Google Scholar 

  • Raven, J. A. (1975) Algal cells, in: D. A. Baker and J. A. Hall (eds.), Transport in Plant Cells and Tissues, Amsterdam, North-Holland, pp. 125–160.

    Google Scholar 

  • Reed, R. H. (1984) Cell Env. 7, 165–170.

    Google Scholar 

  • Reed, R. H. (1990) in: K.M. Cole and R.G Sheath (eds.), Biology of the Red Algae, Cambridge Univ. Press, Cambridge, pp. 147–170.

    Google Scholar 

  • Reed, R. H., Chudek, J. A., Foster, R. and Stewart, W. D. P. (1984a) Arch. Microbiol. 183, 333–337.

    Article  Google Scholar 

  • Reed, R. H., Richardson, D. L., Warr, S. R. C. and Stewart, W. R. C. (1984b) J. gen. Microbiol. 130, 1–4.

    CAS  Google Scholar 

  • Reed, R. H. and Stewart, W. D. P. (1985b) Mar. Biol. 88, 1–9.

    Article  CAS  Google Scholar 

  • Reed, R. H. and Stewart, W. D. P. (1988) in: L. J. Rogers and J. R. Gallon (eds.), Biochemistry of Algae and Cyanobacteria. Proc. Phytochem. Soc. Europe 28, Claredon Press, Oxford, pp. 217–231.

    Google Scholar 

  • Reed, R. H. and Walsby, A. E. (1985) Arch. Microbiol, 143, 290–296.

    Article  CAS  Google Scholar 

  • Richardson, K., Beardall, J. and Raven, J.A. (1983) New. Phytol., 93, 157–191.

    Article  Google Scholar 

  • Russell, N. J. (1990) in: R. M. Laws and F. Franks (eds.), Life at Low Temperatures, London, The Royal Society, pp. 79–92.

    Google Scholar 

  • Stokes, J. L. (1940) Soil Science 49, 171–184.

    Article  CAS  Google Scholar 

  • Sullivan, C. W., Palmisano, A. C., Kottmeier, S., McGroath Grossi, S. and Moe, R. (1985) in: W.R. Siegfried, P.R. Condy and R.M. Laws (eds.), Antarctic Nutrient Cycles and Food Webs, Springer-Verlag, Berlin, Heidelberg, New York, pp. 78–83.

    Google Scholar 

  • Van Assche, F., Vangronsveld, J., and Clijsters, H. (1990) in: J. Barcelo (ed.), Proc. 4th Internat. Conf. on Environmental Contamination, Edinburgh, CEP Consultants, pp. 246–250.

    Google Scholar 

  • Vincent, W. F. (1988) Microbial ecosystem of Antarctica, Cambridge University Press, London.

    Google Scholar 

  • Vincent, W. F. and Roy, S. (1993) Environ. Rev. Vol. 1, 1–12.

    Article  CAS  Google Scholar 

  • Vincent, W. F. and Quesada, A. (1994) Antarctic Research Series, Vol. 62, 111–124.

    Article  Google Scholar 

  • Whitton, B. A. (1970) Phykos 9, 116–125.

    CAS  Google Scholar 

  • Wyn Jones, R. G. and Gorham, J. (1983) Plant Cell Environ. 9, 35–58.

    Google Scholar 

  • Wynn-Williams, D. D. (1990) in: K. C. Marshall (ed.), Advances in Microbial Ecology, Plenum, New York, pp. 71–146.

    Chapter  Google Scholar 

  • Wynn-Williams, D. D. (1994) Antarctic Research Series, Vol. 62, 243–257.

    Article  Google Scholar 

  • Xiong, F., Lederer, F., Lukavsk, J. and Nedbal, L. (1996) J. Plant Physiol. Vol. 148, 42–48.

    Article  CAS  Google Scholar 

  • Zimmermann, U. and Steudle, E. (1980) in: R. M. Spanswick, W. J. Lucas and J. Dainty (eds.), Plant Membrane Transport: Current Conceptual Issues, Elsevier, North-Holland Biomedical Press, Amsterdam, New York, Oxford, pp. 113–127.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joseph Seckbach

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Elster, J. (1999). Algal Versatility in Various Extreme Environments. In: Seckbach, J. (eds) Enigmatic Microorganisms and Life in Extreme Environments. Cellular Origin and Life in Extreme Habitats, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4838-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4838-2_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1863-3

  • Online ISBN: 978-94-011-4838-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics