Skip to main content

Quantum Monte Carlo Simulations of the Two-Dimensional Attractive Hubbard Model: Phase Diagram and Spectral Properties

  • Chapter
Book cover Symmetry and Pairing in Superconductors

Part of the book series: NATO Science Series ((ASHT,volume 63))

  • 233 Accesses

Abstract

The problem of a crossover from a weak coupling BCS (Bardeen-Cooper-Schrieffer, [1]) picture of Cooper pair formation and condensation at a critical temperature to a Bose-Einstein condensation (BEC, [2]) of preformed (local) pairs has recently attracted great attention. The motivation to study this problem comes from experimental observations regarding unusual properties of the high-T c cuprate superconductors. Particularly interesting in this respect are recent experiments showing a pseudo-gap structure in the normal-state density of states of underdoped cuprates that persists almost up to room temperature [3, 4, 5, 6, 7]. A further unusual property different from conventional BCS-type superconductors is the extreme short coherence length (of the order of some lattice constants) of the pairs in the superconducting state, much smaller than in usual superconductors (where it is of the order of several thousand Å). Consequently, the pairing in the cuprates is much less mean-field like. Many physical properties of cuprate superconductors depend on hole doping, thus, leading to a rather universal doping dependence of the transition temperature T c . At a certain doping level x u , the so called underdoped limit, the materials undergo at T > 0 an insulator to anomalous metal transition, and at T = 0 an insulator to superconductor transition. As x is increased T c rises rapidly and attains a maximum at x m (optimum doping).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See e. g., J.R. Schrieffer, Theory of Superconductivity, Addison-Wesley, Reading, 1988

    Google Scholar 

  2. See e. g., J. Blatt, Theory of Superconductivity, Academic Press, New York, 1964; R. Micnas, J. Ranninger, S. Robaszkiewicz, Rev. Mod. Phys. 62, 113 (1990).

    Google Scholar 

  3. H. Ding, T. Yokoya, J.C. Campuzano, T. Takahashi, M. Randeria, M.R. Norman, T. Mochiku, K. Kadowaki, J. Giapintzakis, Nature 382, 51 (1996); H. Ding, J.C. Campuzano, M.R. Norman, M. Randeria, T. Yokoya, T. Takahashi, T. Takeuchi, T. Mochiku, K. Kadowaki, P. Guptasarma, D.G. Hinks, cond-mat/9712100.

    Article  CAS  Google Scholar 

  4. A.G. Loeser, Z.-X. Shen, D.S. Dessau, D.S. Marshall, C.H. Park, P. Fournier, A. Kapitulnik, Science 273, 325 (1996).

    Article  CAS  Google Scholar 

  5. P. Schwaller, T. Greber, J.M. Singer, J. Osterwalder, P. Aebi, H. Berger, L. Forró, unpublished.

    Google Scholar 

  6. P. Coleman, Nature 392, 134 (1998).

    Article  Google Scholar 

  7. Ch. Renner, B. Revaz, K. Kadowaki, L. Maggio-Aprile, Ø. Fischer, unpublished; Ch. Renner, B. Revaz, J.-Y. Genoud, K. Kadowaki, Ø. Fischer, Phys. Rev. Lett. 80, 149 (1998).

    Google Scholar 

  8. T. Schneider, J.M. Singer, Proc. Adriatico Res. Conf. ”Fluctuation Phenomena in High Temperature Superconductors”, Ed. A. Ausloos et al., Kluwer Academic, Dordrecht, 1996.

    Google Scholar 

  9. T. Schneider, Proc. Europhys. Conf. ”Physics of Magnetism 96”, Ed. R. Micnas, Acta Physica Polonica A, 1996.

    Google Scholar 

  10. T. Schneider, J.M. Singer, Europhys. Lett. 40, 79 (1997).

    Article  CAS  Google Scholar 

  11. J.M. Singer, M.H. Pedersen, T. Schneider, H. Beck, H.-G. Matuttis, Phys. Rev. B 54, 1286 (1996).

    Article  CAS  Google Scholar 

  12. J.M. Singer, M.H. Pedersen, T. Schneider, Physica B 230–232, 955 (1997).

    Article  Google Scholar 

  13. J.M. Singer, T. Schneider, M.H. Pedersen, Eur. Phys. J. B 2, 17 (1998).

    Article  CAS  Google Scholar 

  14. P. Noziéres and S. Schmitt-Rink, J. Low Temp. Phys. 59, 95 (1985).

    Article  Google Scholar 

  15. M. Drechsler and W. Zwerger, Ann. Phys. (Leipzig) 1, 15 (1992).

    Google Scholar 

  16. M.Y. Kagan, R. Frésard, M. Capezzali, H. Beck, Phys. Rev. B 57, 5995 (1998).

    Article  CAS  Google Scholar 

  17. J.M. Kosterlitz and D.J. Thouless, J. Phys. C 6, 1181 (1973).

    Article  CAS  Google Scholar 

  18. A. Moreo and D.J. Scalapino, Phys. Rev. Lett. 66, 946 (1991).

    Article  Google Scholar 

  19. R. Micnas and T. Kostyrko, Recent Developments in High Temperature Superconductivity, J. Klamut et al. (Eds.), Springer, Berlin 1996.

    Google Scholar 

  20. R. Micnas, M.H. Pedersen, S. Schafroth, T. Schneider, J.J. Rodríguez-Núñez, H. Beck, Phys. Rev. B 52, 16223 (1995).

    Article  CAS  Google Scholar 

  21. M.H. Pedersen, J.J. Rodríguez-Núñez, H. Beck, T. Schneider, S. Schafroth, cond-mat/9702173.

    Google Scholar 

  22. T. Schneider, H. Beck, D. Bormann, T. Meintrup, S. Schafroth, A. Schmidt, Physica C 216, 432 (1993).

    Article  CAS  Google Scholar 

  23. O. Tchernyshyov, Phys. Rev. B 56, 3372 (1997).

    Article  CAS  Google Scholar 

  24. A.J. Leggett, J. Phys. (Paris) Colloq 41, C7–19 (1980).

    Article  Google Scholar 

  25. R. Haussmann, Z. Phys. B. 91, 291 (1993) and Phys. Rev. B 49, 12975 (1994).

    Article  Google Scholar 

  26. V. Loktev, S.G. Sharapov, Cond. Mat. Phys. 11, 131 (1997); V.P. Gusynin, V.M. Loktev, S.G. Sharapov, cond-mat/9709034; V.M. Loktev, V.M. Turkowski, cond-mat/9707191.

    CAS  Google Scholar 

  27. M. Randeria, Bose-Einstein Condensation, A. Griffin et al. (Eds.), Cambridge University Press, Cambridge, England, 1994; M. Randeria, Proc. Adriatico Res. Conf. Fluctuation Phenomena in High Temperature Superconductors, Ed. M. Ausloos et al., Kluwer Academic, The Netherlands, 1996; M. Randeria et al., Phys. Rev. Lett. 41, 327 (1990).

    Google Scholar 

  28. N. Trivedi and M. Randeria, Phys. Rev. Lett. 75, 312 (1995); M. Randeria, N. Trivedi, A. Moreo, R. Scalettar, Phys. Rev. Lett., 69, 2001 (1992).

    Article  CAS  Google Scholar 

  29. J.E. Hirsch, Phys. Rev. B 31, 4403 (1985)

    Article  Google Scholar 

  30. H.-G. Matuttis, PhD. Thesis, University of Regensburg, 1995.

    Google Scholar 

  31. E.Y. Loh Jr., J.E. Gubernatis, R.T. Scalettar, R.L. Sugar, S.R. White, Proc. Workshop on Interacting Electrons in Reduced Dimensions D. Baeriswyl and D.K. Campbell (Eds.), Plenum Press, New York, 1989.

    Google Scholar 

  32. M. Ulmke, H. Müller-Krumbhaar, Z. Phys. B — Cond. Matter 86, 383 (1992).

    Article  Google Scholar 

  33. W. von der Linden, Physics Reports 220, 53 (1992).

    Article  Google Scholar 

  34. M. Jarrell and J.E. Gubernatis, Phys. Reports 269, 133 (1996).

    Article  CAS  Google Scholar 

  35. R.N. Silver, D.S. Sivia, J.E. Gubernatis, M. Jarrell, Phys. Rev. Lett. 65, 496 (1990); J. Gubernatis, M. Jarrell, R.N. Silver, D.S. Sivia, Phys. Rev. B 44, 6011 (1991); R.N. Silver, D.S. Sivia, J.E. Gubernatis, Phys. Rev. B 41, 2380 (1990); R.N. Silver, D.S. Sivia, J.E. Gubernatis, Quantum Simulations of Condensed Matter Phenomena, J.E. Gubernatis and J.D. Doll (Eds.), World Scientific, Singapore, 1990.

    Article  CAS  Google Scholar 

  36. J.R. Engelbrecht, A. Nazarenko, cond-mat/9806223.

    Google Scholar 

  37. M. Letz and R.J. Gooding, cond-mat/9802107.

    Google Scholar 

  38. A. Schmid, Z. Phys. 231, 324 (1970).

    Article  Google Scholar 

  39. E. Abrahams, M. Redi, C. Woo, Phys. Rev. B 1, 280 (1970).

    Article  Google Scholar 

  40. A.I. Solomon, K.A. Penson, cond-mat/9712228.

    Google Scholar 

  41. C.N. Yang, Phys. Rev. Lett. 63, 2144 (1989).

    Article  Google Scholar 

  42. N.D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966); P.C. Hohenberg, Phys. Rev. 158, 383 (1967).

    Article  CAS  Google Scholar 

  43. J.M. Singer, P.F. Meier, Physica C 302, 183 (1998).

    Article  CAS  Google Scholar 

  44. P.J.H. Denteneer, An Guozhong, J.M.J. van Leeuwen, Phys. Rev. B 47 (1993) 6256. P.J.H. Denteneer, Guozhong An, J.M.J. van Leeuwen, Europhys. Lett. 16 (1991) 5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Singer, J.M., Schneider, T., Meier, P.F. (1999). Quantum Monte Carlo Simulations of the Two-Dimensional Attractive Hubbard Model: Phase Diagram and Spectral Properties. In: Ausloos, M., Kruchinin, S. (eds) Symmetry and Pairing in Superconductors. NATO Science Series, vol 63. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4834-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4834-4_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5521-2

  • Online ISBN: 978-94-011-4834-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics