Skip to main content

Nitrate acts as a signal to control gene expression, metabolism and biomass allocation

  • Chapter
Regulation of Primary Metabolic Pathways in Plants

Part of the book series: Proceedings of the Phytochemical Society of Europe ((PPSE,volume 42))

Abstract

Tobacco genotypes with decreased activity of nitrate reductase [NR] have been used to establish an in plant screen for processes that are regulated by nitrate. These genotypes resemble nitrate-limited wild-types when they are grown on low nitrate. However, the maximum daily rate of nitrate assimilation is restricted by the low activity of NR, and when the nitrate supply is increased these plants do not increase their rate of growth, their amino acid or protein content significantly. Instead, they accumulate large amounts of nitrate. This is accompanied by an increase of several transcripts (nia, nii, gln1, glu, icdh1, citrate synthase, cytosolic pyruvate kinase and ppc), by increased activity of the encoded enzymes, and by a dramatic accumulation of organic acids. The accumulation of nitrate also leads to repression of agpS2, a decrease of ADPglucose pyrophosphorylase activity, and a dramatic inhibition of starch synthesis. It is concluded that nitrate acts as a source of signals to initiate a coordinated and effective change in the expression of many genes whose products are required directly or indirectly during nitrate assimilation and use. Further, nitrate accumulation in the shoot results in a strong inhibition of root growth, that is primarily due to decreased formation of lateral roots, and is accompanied by changes in carbon allocation and use. It is concluded that nitrate in the shoot is monitored to provide information about the nitrogen status of the plant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ågren, G.I. (1985). Theory for growth of plants derived from the nitrogen productivity concept. Physiologia Plantarum, 64, 17–28.

    Article  Google Scholar 

  • Ågren, G.I. and Ingestad, T. (1987). Root:shoot ratio is a balance between nitrogen productivity and photosynthesis. Plant Cell and Environment, 10, 579–586.

    Google Scholar 

  • Bachmann, M., Huber, J.L., Liao, P.C., Gage, D.A. and Huber, S.C. (1996). The inhibitor protein of phosphorylated nitrate reductase from spinach (Spinacia oleracea) leaves is a 14-3-3 protein. FEBS Letters, 387, 127–131.

    Article  PubMed  CAS  Google Scholar 

  • Beck, E. (1996). Regulation of the shoot/root ratio by cytokinins in Urtica dioica. Plant and Soil, 185, 3–12.

    Article  CAS  Google Scholar 

  • Bernier, G., Havelange, A., Houssa, C., Petitjean, A. and Lejeune, P. (1993). Physiological signals that induce flowering. Plant Cell, 5, 1147–1155.

    PubMed  CAS  Google Scholar 

  • Bloom, A.J., Chapin, F.S. and Mooney, H.A. (1985). Resource limitation in plants — an economic analogy. Annual Review of Ecology and Systematics, 16, 363–392.

    Google Scholar 

  • Boerjan, W., Cervera, M.-T., Delarue, M., Beckman, T., Dewitte, W., Bellini, C., Caboche, M., Van Onckelen, H., Van Montagu, M. and Inzé, D (1995). Superroot, a recessive mutation in Arabidopsis confers auxin overproduction. Plant Cell, 7, 1405–1419.

    PubMed  CAS  Google Scholar 

  • Brouwer, R. (1962). Nutrient influences on the distribution of the dry matter in the plant. Netherlands Journal of Agricultural Sciences, 10, 399–408.

    Google Scholar 

  • Burton, W.G (1989). The Potato. Longman Scientific and Technical, Loughborough.

    Google Scholar 

  • Buysse, J., Smolders, E. and Merkx, R. (1993). The role of free sugars and amino acids and its regulation of biomass partitioning and plant growth. Plant and Soil, 156, 191–194.

    Article  Google Scholar 

  • Celenza, J.L. Jr., Grisafi, P.L. and Fink, G.R. (1995). A pathway for lateral root formation in Arabidopsis thaliana. Genes and Development, 9, 2131–2142.

    Article  PubMed  CAS  Google Scholar 

  • Champigny, M.L. and Foyer, C.H. (1992). Nitrate activation of cytosolic protein kinases diverts photosynthetic carbon from sucrose to amino acid biosynthesis. Basis for a new concept. Plant Physiology, 100, 7–12.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, C.L., Acedo, G.N., Dewdney, J., Goodman, H.M. and Conkling, M.A. (1991). Differential expression of two Arabidopsis nitrate reductase genes. Plant Physiology, 96, 275–279.

    Article  PubMed  CAS  Google Scholar 

  • Chollet, R., Vidal, J. and O’Leary, M.H. (1996). Phosphoenolpyruvate carboxylase: a ubiquitous, highly regulated enzyme in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 47, 273–298.

    Article  PubMed  CAS  Google Scholar 

  • Chu, C.C., Coleman, J.S. and Mooney, H.A. (1992). Control of biomass partitioning between roots and shoot: atmospheric carbon dioxide enrichment and the acquisition and allocation of carbon and nitrogen in wild radish. Oecologia, 89, 580–587.

    Google Scholar 

  • Crawford, N.M. (1995). Nitrate: nutrient and signal for plant growth. Plant Cell, 7, 859–868.

    PubMed  CAS  Google Scholar 

  • Crawford, N.M. and Arst Jr., H.N. (1993). The molecular genetics of nitrate assimilation in fungi and plants. Annual Review of Genetics, 27, 115–146.

    Article  PubMed  CAS  Google Scholar 

  • Deng, M.D., Moureaux, T. and Lamaze, T. (1989). Diurnal and circadian fluctuations of malate levels and its close relationship to nitrate reduction in tobacco leaves. Plant Science, 65, 191–197.

    Article  CAS  Google Scholar 

  • Drew, M.C. and Saker, L.R. (1975). Nutrient supply and the growth of the seminal root system in barley. II. Localized compensatory changes in lateral root growth and the rates of nitrate uptake when nitrate is restricted to only one part of the root system. Journal of Experimental Botany, 26, 79–90.

    Article  CAS  Google Scholar 

  • Ericsson, T. (1995). Growth and shoot:root allocation of seedlings in relation to nutrient availablity. Plant and Soil, 168, 205–214.

    Article  Google Scholar 

  • Farrar, J.F. (1996) Sinks — integral parts of a whole plant. Journal of Experimental Botany, 47, 1273–1279.

    Article  PubMed  CAS  Google Scholar 

  • Faure J.D., Vincentz, M., Kronenberger, J. and Caboche M. (1991). Coregulated expression of nitrate and nitrite reductases. Plant Journal, 1, 107–113.

    Article  CAS  Google Scholar 

  • Fernandez, E. and Cardenas, J. (1989). Genetics and regulatory aspects of nitrate assimilation in algae. In: Wray, J.L. and Kinghorn, J.L. (Eds). Molecular and Genetic Aspects of Nitrate Assimilation (pp 101–124). Oxford Science Publications, Oxford.

    Google Scholar 

  • Fetene, M. and Beck, E. (1993). Reversal of sink-source relations in Urtica dioica L. plants by increasing cytokinin import into the shoot. Botanica Acta, 106, 235–240.

    CAS  Google Scholar 

  • Fichtner, K., Quick, W.P., Schulze, E.-D., Mooney, H.A., Rodermel, S.R., Bogorad, L. and Stitt, M. (1993). Decreased ribulose-1,5-bisphosphate carboxylase-oxygenase in transgenic tobacco transformed with ‘antisense’ rbcS. V. Relationship between photosynthetic rate, storage strategy, biomass allocation and vegetative plant growth at three different nitrogen supplies. Planta, 190, 1–9.

    Article  CAS  Google Scholar 

  • Fichtner, K. and Schulze, E.-D. (1992). The effect of nitrogen nutrition on annuals originating from habitats of different nitrogen availability. Oecologia, 92, 236–241.

    Article  Google Scholar 

  • Fieuw, S., Müller-Röber, B., Gálvez, S. and Willmitzer, L. (1995). Cloning and expression analysis of the cytosolic NADP+-dependent isocitrate dehydrogenase from potato. Plant Physiology, 107, 905–913.

    Article  PubMed  CAS  Google Scholar 

  • Galangau, F., Daniel-Vedèle, F., Moureaux, T., Dorbe, M.F. Leydecker, M.T. and Caboche, M. (1988). Expression of leaf nitrate reductase gene from tomato and tobacco in relation to light dark regimes and nitrate supply. Plant Physiology, 88, 383–388.

    Article  PubMed  CAS  Google Scholar 

  • Gowri, G., Ingemarsson, B., Redinbaugh, M.G. and Campbell, W.H. (1992). Nitrate reductase transcript is expressed in the primary response of maize to environmental nitrate. Plant Molecular Biology, 18, 55–64.

    Article  PubMed  CAS  Google Scholar 

  • Granato, T.C. and Raper, C.D. Jr. (1989). Proliferation of maize roots in response to localized supply of nitrate. Journal of Experimental Botany, 40, 263–275.

    Article  PubMed  CAS  Google Scholar 

  • Hobbie, L. and Estelle, M. (1995). The axr4 auxin-resistant mutants of Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation. Plant Journal, 7, 211–220.

    Article  PubMed  CAS  Google Scholar 

  • Hoff, T., Truong, H.-N. and Caboche, M. (1994). The use of mutants and transgenic plants to study nitrate assimilation. Plant Cell and Environment, 17, 489–506.

    Article  CAS  Google Scholar 

  • Hofstra, R., Lanting, L. and De Visser, R. (1985). Metabolism of Urtica dioica is dependent on the supply of mineral nutrients. Physiologia Plantarum, 63, 13–18.

    Article  CAS  Google Scholar 

  • Huber, S.C. (1983). Relation between photosynthetic starch formation and dry-weight partitioning between the shoot and root. Canadian Journal of Botany, 61, 2709–2716.

    Article  Google Scholar 

  • Imsande, J. and Touraine, B. (1994). Nitrogen demand and the regulation of nitrate uptake. Plant Physiology, 105, 3–7.

    PubMed  CAS  Google Scholar 

  • Kaiser, W.M. and Huber, S.C. (1994). Posttranslational regulation of nitrate reductase in higher plants. Plant Physiology, 106, 817–821.

    PubMed  CAS  Google Scholar 

  • Kronenberger, J., Lepingle, A., Caboche, M. and Vaucheret, H. (1993). Cloning and expression of distinct nitrite reductases in tobacco leaves and roots. Molecular and General Genetics, 236, 203–208.

    Article  PubMed  CAS  Google Scholar 

  • Kuiper, D., Kuiper, P.J.C., Lambers, H., Schuit, J. and Staal, M. (1989). Cytokinin concentration in relation to mineral nutrition and benzyladenine treatment in Plantago major spp. pleiosperma. Physiologia Plantarum, 75, 511–517.

    Article  CAS  Google Scholar 

  • Lainé, P., Ourry, A. and Boucaud, J. (1995). Shoot control of nitrate uptake rates by roots of Brassica napus L.: effects of localized nitrate supply. Planta, 196, 77–83.

    Article  Google Scholar 

  • Lam, H.M., Coshigano, K., Oliveira, I., Melo-Oliveira, R. and Coruzzi, G. (1996). The molecular genetics of nitrogen assimilation into amino acids in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 47, 569–593.

    Article  PubMed  CAS  Google Scholar 

  • Lambers, H., Cambridge, M.L., Konings, H. and Pons, T.L. (1990). Causes and consequences of variation in growth rate and productivity of higher plants. SPB Academic Publishing bv, The Hague.

    Google Scholar 

  • Lauerer M. (1996). Wachstum, Kohlenstoff-und Stickstoffhaushalt von Nicotiana tabacum mit reduzierter Nitratreduktaseaktivität. Bayreuther Forum Ökologie, Vol. 31, Bayreuther Institut für Terrestrische Ökosystemforschung, Bayreuth

    Google Scholar 

  • Levin, S.A., Mooney, H.A. and Field, C. (1989). The dependence of plant root:shoot ratios on internal nitrogen concentration. Annals of Botany, 64, 71–75.

    Google Scholar 

  • Li, B., Zhang X.-Q. and Chollet, R. (1996). Phosphoenolpyruvate carboxylase kinase in tobacco leaves is activated by light in a similar but not identical way as in maize. Plant Physiology, 111, 497–505.

    PubMed  CAS  Google Scholar 

  • Marschner, M. (1995). Mineral Nutrition of Higher Plants, 2nd edition. Academic Press, London.

    Google Scholar 

  • Martinoia, E. and Rentsch, D. (1994). Malate compartmentation — responses to a complex metabolism. Annual Review of Plant Physiology and Plant Molecular Biology, 45, 447–467.

    Article  CAS  Google Scholar 

  • Marzluf, G. A. (1993). Regulation of sulfur and nitrogen metabolism in filamentous fungi. Annual Review of Microbiology, 47, 31–55.

    Article  PubMed  CAS  Google Scholar 

  • Moorhead, G., Douglas, P. and MacKintosh, C. (1996). Phosphorylated nitrate reductase from spinach leaves is inhibited by 14-3-3 proteins and activated by fusicoccin. Current Biology, 6, 1104–1113.

    Article  PubMed  CAS  Google Scholar 

  • Müller, A. and Mendel, R. (1989). Biochemical and somatic cell genetics of nitrate reduction in Nicotiana. In: Wray, J.L. and Kinghorn, J.L. (Eds). Molecular and Genetic Aspects of Nitrate Assimilation (pp 166–185). Oxford Science Publications, Oxford.

    Google Scholar 

  • Pouteau, S., Chérel I., Vaucheret, H. and Caboche, M. (1989). Nitrate reductase mRNA regulation in Nicotiana plumbaginifolia nitrate reductase-deficient mutants. Plant Cell, 1, 1111–1120.

    PubMed  CAS  Google Scholar 

  • Preiss, J., Ball, K., Smith-White, B., Inglesias, A., Kakefuda, G. and Li, L. (1991). Starch biosynthesis and its regulation. Biochemical Society Transactions, 19, 539–547.

    PubMed  CAS  Google Scholar 

  • Quesada, A., Krapp, A., Trueman, L.J., Daniel-Vedèle, F., Fernández, E., Forde, B.G. and Caboche, M. (1997). PCR-identification of a Nicotiana plumbaginifolia cDNA homologous to the high-affinity nitrate transporters of the crnA family. Plant Molecular Biology, 34, 265–274.

    Article  PubMed  CAS  Google Scholar 

  • Redinbaugh, M.G. and Campbell, W.H. (1991). Higher plant responses to environmental nitrate. Physiologia Plantarum, 82, 640–650.

    Article  CAS  Google Scholar 

  • Redinbaugh, M.G. and Campbell, W.H. (1993). Glutamine synthetase and ferredoxin-dependent glutamate synthase expression in the maize (Zea mays) root: primary response to nitrate. Plant Physiology, 101, 1249–1255.

    PubMed  CAS  Google Scholar 

  • Ritchie, S.W., Redinbaugh, M.G., Shiraishi, N., Verba, J.M. and Campbell, W.H. (1994). Identification of a maize root transcript expressed in the primary response to nitrate: characterization of a cDNA with homology to ferredoxin-NADP+ oxidoreductase. Plant Molecular Biology, 26, 679–690.

    Article  PubMed  CAS  Google Scholar 

  • Sattelmacher, B. and Thorns, K. (1995). Morphology and physiology of the seminal root system of young maize plants as influenced by a locally restricted nitrate supply. Zeitschrift für Pflanzenernährung und Bodenkunde, 158, 493–497.

    Article  CAS  Google Scholar 

  • Scheible, W.-R., Lauerer, M., Schulze, E.-D., Caboche, M. and Stitt, M. (1997). Accumulation of nitrate in the shoot acts as a signal to regulate shoot-root allocation in tobacco. Plant Journal, 11, 671–691.

    Article  CAS  Google Scholar 

  • Scheible, W.-R., Gonzales-Fontes, A., Lauerer, M., Müller-Röber, B., Caboche, M. and Stitt, M. (1997b). Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell, 9, 783–798.

    PubMed  CAS  Google Scholar 

  • Scheible, W.-R., González-Fontes, A., Morcuende, R., Lauerer, M., Geiger, M., Glaab, J., Gojon, A., Schulze, E.-D. and Stitt, M. (1997c). Tobacco mutants with a decreased number of functional nia-genes compensate by modifying the diurnal regulation of transcription, post-translational modification and turnover of nitrate reductase. Planta, 203, 304–319.

    Article  PubMed  CAS  Google Scholar 

  • Shaner, D.L. and Boyer, J.S. (1976). Nitrate reductase activity in maize (Zea mays L.) leaves. I. Regulation by nitrate flux. Plant Physiology, 58, 499–504.

    Article  PubMed  CAS  Google Scholar 

  • Simons, C., Migliaccio, F., Masson, P., Caspar, T. and Soll, D. (1995). A novel root gravitropism mutant of Arabidopsis thaliana exhibiting altered auxin physiology. Physiologia Plantarum, 93, 970–978.

    Article  Google Scholar 

  • Stitt, M. and Schulze, E.-D. (1994). Does Rubisco control the rate of photosynthesis and plant growth? An exercise in molecular ecophysiology. Plant Cell and Environment, 17, 465–487.

    Article  CAS  Google Scholar 

  • Stitt, M. (1996). Metabolic regulation of photosynthesis. In: Baker, N.R. (Ed). Advances in Photosynthesis, Vol. 5, Photosynthesis and the Environment (pp. 151–190). Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Sugiharto, B. and Sugiyama, T. (1992). Effects of nitrate and ammonium on gene expression of phosphoenolpyruvate carboxylase and nitrogen metabolism in maize leaf tissue during recovery from nitrogen stress. Plant Physiology, 98, 1403–1408.

    Article  PubMed  CAS  Google Scholar 

  • Sugiharto, B., Suzuki, I., Burnell, J.N. and Sugiyama, T. (1992). Glutamine induces the nitrogen-dependent accumulation of mRNAs encoding phosphoenolpyruvate carboxylase and carbonic anhydrase in detached maize leaf tissue. Plant Physiology, 100, 2066–2070.

    Article  PubMed  CAS  Google Scholar 

  • Sukanya, R., Li, M.G. and Snustad, D.P. (1994). Root-and shoot-specific responses of individual glutamine synthetase genes of maize to nitrate and ammonia. Plant Molecular Biology, 26, 1935–1946.

    Article  PubMed  CAS  Google Scholar 

  • Trueman, L.J., Richardson, A. and Forde, B.G. (1996). Molecular cloning of higher plant homologues of the high affinity nitrate transporters of Chlamydomonas reinhardtii and Aspergillus nidulans. Gene, 175, 223–231.

    Article  PubMed  CAS  Google Scholar 

  • Van der Werf, A. and Nagel, O.W. (1996). Carbon allocation to shoots and roots in relation to nitrogen supply is mediated by cytokinins and sucrose: opinion. Plant and Soil, 185, 21–32.

    Article  Google Scholar 

  • Vaucheret, H., Chabaud, M., Kronenberger, J. and Caboche, M. (1990). Functional complementation of tobacco and Nicotiana plumbaginifolia nitrate reductase deficient mutants by transformation with the wild-type alleles of the tobacco structural genes. Molecular and General Genetics, 220, 468–474.

    Article  CAS  Google Scholar 

  • Vincentz, M., Moureaux, T., Leydecker, M.T., Vaucheret, H. and Caboche, M. (1993). Regulation of nitrate and nitrite reductase expression in Nicotiana plumbaginifolia leaves by nitrogen and carbon metabolites. Plant Journal, 3, 315–324.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, B.M. and Beck, E. (1993). Cytokinins in the perennial herb Urtica dioica L. as influenced by its nitrogen status. Planta, 190, 511–518.

    Article  CAS  Google Scholar 

  • Waring, R.H., McDonald, A.J.S., Larsson, S., Ericsson, T., Wiren, A., Arwidsson, E., Ericsson, A. and Lohammar, T. (1985). Differences in chemical composition of plants grown at constant relative growth rates with stable mineral nutrition. Oecologia, 66, 157–160.

    Article  Google Scholar 

  • Wray, J.L. (1993). Molecular biology, genetics and regulation of nitrite reduction in higher plants. Physiologia Plantarum, 89, 607–612.

    Article  CAS  Google Scholar 

  • Webster, B.D. and Radin, J.W. (1972). Growth and development of cultured radish tips. American Journal of Botany, 59, 744–751.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stitt, M., Scheible, WR. (1999). Nitrate acts as a signal to control gene expression, metabolism and biomass allocation. In: Kruger, N.J., Hill, S.A., Ratcliffe, R.G. (eds) Regulation of Primary Metabolic Pathways in Plants. Proceedings of the Phytochemical Society of Europe, vol 42. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4818-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4818-4_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6021-9

  • Online ISBN: 978-94-011-4818-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics