Skip to main content

Expression of fructosyltransferase genes in transgenic plants

  • Chapter
Regulation of Primary Metabolic Pathways in Plants

Abstract

Fructans serve as a carbohydrate reserve in many plant species and are also synthesised by several microorganisms. Over the past decade interest in the use of fructans for food and non-food applications has increased exponentially. Our interest is to modify crops for the production of tailor-made fructans. Therefore we introduced genes encoding bacterial fructosyltransferases into several non-fructan storing plants, e.g. tobacco and potato. Different cellular targeting sequences were used for the expression of the bacterial levansucrases in transgenic tobacco and potato plants resulting in varying levels of fructan and often in changes in the phenotype.

Plant fructan biosynthetic genes have also been cloned and this greatly expands the opportunities for the production of tailor-made fructans in transgenic plants. Introduction of the onion gene encoding the enzyme fructan:fructan 6-glucosyl fructosyltransferase, a key enzyme in the formation of the inulin neoseries, into chicory enables this crop to synthesise the inulin neoseries in addition to linear inulin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bonnett, G.D., Sims, I.M., John, J.A.S. and Simpson, R.J. (1994). Purification and characterisation of fructans with β-2,1-and β-2,6-glycosidic linkages suitable for enzyme studies. New Phytologist, 127, 261–269.

    Article  CAS  Google Scholar 

  • Caimi, P.G., McCole, L.M., Klein, T.M. and Kerr, P.S. (1996). Fructan accumulation and sucrose metabolism in transgenic maize endosperm expressing a Bacillus amyloliquefaciens SacB gene. Plant Physiology, 110, 355–363.

    PubMed  CAS  Google Scholar 

  • Carpita, N.C., Kanabus, J. and Housley, T.L. (1989). Linkage structure of fructans and fructan oligomers from Triticum aestivum and Festuca arundinaceae leaves. Journal of Plant Physiology, 134, 162–168.

    Article  CAS  Google Scholar 

  • Ebskamp, M.J.M. (1994) Fructan accumulation in transgenic plants. PhD Thesis, Utrecht University.

    Google Scholar 

  • Fontana, A., Herman, B. and Guiraud, J. (1993). Production of high-fructose containing syrups from Jerusalem artichoke extracts with fructose enrichment through fermentation. In: Fuchs, A. (Ed). Inulin and inulin containing crops: Studies in plant science, 3 (pp 251–258). Elsevier, Amsterdam.

    Chapter  Google Scholar 

  • Fuchs, A. (1991). Current and potential food and non-food applications of fructans. Biochemical Society Transactions, 19, 555–560.

    PubMed  CAS  Google Scholar 

  • Fuchs, A. (1993). Inulin and inulin-containing crops: Studies in plant science, 3. Elsevier, Amsterdam.

    Google Scholar 

  • Hendry, G.A.F. (1993). Evolutionary origins and natural functions of fructans — a climatological, biogeographic and mechanistic appraisal. New Phytologist, 123, 3–14.

    Article  CAS  Google Scholar 

  • Hendry, G.A.F. and Wallace, R.K. (1993). The origin, distribution, and evolutionary significance of fructans. In: Suzuki, M. and Chatterton, N.J. (Eds). Science and Technology of Fructans (pp. 119–139). CRC Press, Boca Raton, FL.

    Google Scholar 

  • Koops, A.J. and Jonker, H.H. (1996) Purification and characterization of the enzymes of fructan biosynthesis in tubers of Helianthus tuberosus Colombia. II. Purification of sucrose:sucrose 1-fructosyltransferase and reconstitution of fructan synthesis in vitro with purified sucrose:sucrose 1-fructosyltransferase and fructan:fructan 1-fructosyltransferase. Plant Physiology, 110, 1167–1175.

    PubMed  CAS  Google Scholar 

  • Livingstone III, D.P., Chatterton, N.J. and Harrison, P.A. (1993). Structure and quantity of fructan oligomers in oat (Avena spp.). New Phytologist, 123, 725–734.

    Article  Google Scholar 

  • Lüscher, M., Erdin, C., Sprenger, N., Hochstrasser, U., Boller, T. and Wiemken, A. (1996). Inulin synthesis by a combination of purified fructosyltransferases from tubers of Helianthus tuberosus. FEBS Letters, 385, 39–42.

    Article  PubMed  Google Scholar 

  • Pilon-Smits, E.A.H., Ebskamp, M.J.M., Paul, M.J., Jeuken, M.J.W., Weisbeek, P.J. and Smeekens, S.C.M. (1995). Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiology, 107, 125–130.

    PubMed  CAS  Google Scholar 

  • Shiomi, N. (1981). Purification and characterisation of 6G-fructosyltransferase from the roots of asparagus (Asparagus officinalis L.). Carbohydrate Research, 96, 281–292.

    Article  CAS  Google Scholar 

  • Shiomi, N. (1989). Properties of fructosyltransferases involved in the synthesis of fructan in Liliaceous plants. Journal of Plant Physiology, 134, 151–155.

    Article  CAS  Google Scholar 

  • Smeekens, S., Pilon-Smits, E., Ebskamp, M. Turk, S. Visser, R. and Weisbeek, P. (1996). Transgenic fructan-accumulating tobacco and potato plants. In: Fuchs, A. (ed). Proceedings of the Fifth Seminar on Inulin (pp 53–58). Carbohydrate Research Foundation, The Hague.

    Google Scholar 

  • Sprenger, N., Bortlik, K., Brandt, A., Boller, T. and Wiemken, A. (1995). Purification, cloning, and functional expression of sucrose:fructan 6-fructosyltransferase, a key enzyme of fructan synthesis in barley. Proceedings of the National Academy of Sciences USA, 92, 11652–11656.

    CAS  Google Scholar 

  • Suzuki, M. and Chatterton, N.J. (1993). Science and technology of fructans. CRC Press, Boca Raton.

    Google Scholar 

  • Suzuki, M. and Pollock, C.J. (1986) Extraction and characterisation of the enzymes of fructan biosynthesis in timothy (Phleum pratense L.). Canadian Journal of Botany, 64, 1884–1887.

    Article  CAS  Google Scholar 

  • Turk, S., de Roos, K., Scotti, P.A., van Dun, K., Weisbeek, P. and Smeekens, S.C.M. (1997). The vacuolar sorting domain of sporamin transports GUS, but not levansucrase, to the plant vacuole. New Phytologist, 136, 29–38.

    CAS  Google Scholar 

  • Van der Meer, I.M., Ebskamp, M.J.M., Visser, R.G.F., Weisbeek, P.J. and Smeekens, S.C.M. (1994). Fructan as a new carbohydrate sink in transgenic potato plants. Plant Cell, 6, 561–570.

    Google Scholar 

  • Vijn, I., van Dijken, A., Sprenger, N., van Dun, K., Weisbeek, P., Wiemken, A. and Smeekens, S. (1997). Fructan of the inulin neoseries is synthesized in transgenic chicory plants (Cichorium intybus L.) harbouring onion (Allium cepa L.) fructan:fructan 6Gfructosyltransferase. Plant Journal, 11, 387–398.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vijn, I. et al. (1999). Expression of fructosyltransferase genes in transgenic plants. In: Kruger, N.J., Hill, S.A., Ratcliffe, R.G. (eds) Regulation of Primary Metabolic Pathways in Plants. Proceedings of the Phytochemical Society of Europe, vol 42. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4818-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4818-4_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6021-9

  • Online ISBN: 978-94-011-4818-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics