Skip to main content

Cosmic Dust and Laboratory Simulation: Wishes, Results and Open Problems

  • Chapter
Book cover Formation and Evolution of Solids in Space

Part of the book series: NATO ASI Series ((ASIC,volume 523))

Abstract

Cosmic dust plays an active role in several processes occurring in the interstellar medium, in star formation regions and around evolved stars. Thus, the identification of its properties is one of the major goals of modern astrophysics. In this framework, laboratory experiments are a fundamental tool, which allows us to interpret observations and to validate theoretical models on a quantitative basis. This is the reason why, in the recent years, a new generation of “laboratory astrophysics” has grown up, aimed at performing systematic experiments under carefully controlled and reproducible conditions. The goal is to make comparative analyses between samples produced and processed under different ambient conditions, which may reproduce — at the best we can do in a laboratory on Earth — the actual space environment. In this paper we intend to give an overview of recent results obtained in the Cosmic Physics Laboratory in Naples on several soot samples. A key of interpretation which correlates dust optical behaviour to structural properties in a self-consistent scenario will be discussed. This is a sort of evolutionary progression, which is linked both to production conditions and to processing mechanisms, such as thermal annealing, UV irradiation and ion bombardment. The derived general principles may be applicable to interpret spectral behaviours observed in different astronomical environments for carbon-based materials: interstellar and circumstellar media, cometary and interplanetary environments. Of course, several uncertainties still remain, especially concerning both the mass budget available in space as solid condensed forms and the aggregation status of cosmic dust. From the experimental point of view, many points are not fully clarified and require further analyses to remove several question marks. In this sense, a new plan of laboratory activities, based on innovative techniques, has to be developed to perform significant steps ahead. This in the view of pursuing new frontiers along the line that should bring to a consistent interpretation of physical and chemical phenomena involving cosmic dust.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dominik, C, and Tielens, A.G.G.M. (1997) The physics of dust coagulation and the structure of dust aggregates in space, Astrophys. J. 480, 647–673.

    Article  ADS  Google Scholar 

  2. Jäger, C., Mutschke, H., Begemann, B., Dorschner, J., and Henning, Th. (1994) Steps toward interstellar silicate mineralogy I, Astron. Astrophys. 292, 641–655.

    ADS  Google Scholar 

  3. Dorschner, J., Begemann, B., Henning, Th., Jäger, C, and Mutschke, H. (1995) Steps toward interstellar silicate mineralogy, II, Astron. Astrophys., 300, 503–520.

    ADS  Google Scholar 

  4. Papoular, R., Conard, J., Guillois, O., Nenner, I., Reynaud, C., and Rouzaud, J.-N. (1996) A comparison of solid-state carbonaceous models of cosmic dust, Astron. Astrophys. 315, 222–236.

    ADS  Google Scholar 

  5. Greenberg, J.M., Li, A., Mendoza-Gómez, C.X. et al. (1995) Approaching the inter-stellar grain organic refractory component, Astrophys. J. 455, L177–L180.

    Article  ADS  Google Scholar 

  6. Colangeli, L., Mennella, V., Palumbo, P., Rotundi, A., and Bussoletti, E. (1995) Mass extinction coefficients of various submicron amorphous carbon grains: tabulated values from 40 nm to 2 mm, Astron. Astrophys. Suppl. Ser. 113, 561–577.

    ADS  Google Scholar 

  7. Mennella, V., Colangeli, L., Blanco, A., Bussoletti, E., Fonti, S., Palumbo, P., and Mertins, H.C. (1995) A dehydrogenation study of cosmic carbon analogue grains, Astrophys. J. 444, 288–292.

    Article  ADS  Google Scholar 

  8. Mennella, V., Colangeli, L., Bussoletti, E., Monaco, G., Palumbo, P., and Rotundi, A. (1995) On the electronic structure of small carbon grains of astrophysical interest, Astrophys. J. Suppl. Ser. 100, 149–157.

    Article  ADS  Google Scholar 

  9. Mennella, V., Colangeli, L., and Bussoletti, E. (1995) The absorption coefficient of cosmic carbon analogue grains in the wavelength range 20–2000 µm, Astron. Astrophys. 295, 165–170.

    ADS  Google Scholar 

  10. Mennella, V., Colangeli, L., Bussoletti, E., Merluzzi, P., Monaco, G., Palumbo, P., and Rotundi, A. (1995) Laboratory experiments on cosmic dust analogues: the structure of small carbon grains, Planet. Spa. Sci. 43, 1217–1221.

    Article  ADS  Google Scholar 

  11. Mennella, V., Colangeli, L., Palumbo, P., Rotundi, A., Schutte, W.A., and Bussoletti, E. (1996) Activation of a UV resonance in hydrogenated amorphous carbon grains by exposure to UV radiation, Astrophys. J. 464, L191–L194.

    Article  ADS  Google Scholar 

  12. Mennella, V., Colangeli, L., Cecchi Pestellini, C., Palomba, E., Palumbo, P., Rotundi, A., and Bussoletti E. (1997) The role of hydrogen in small amorphous carbon grains: the IR spectrum, From Stardust to Planetesimals (contributed papers), eds. Y.J. Pendleton and A.G.G.M. Tielens, NASA CP3343, 109–112.

    Google Scholar 

  13. Mennella, V., Baratta, G.A., Colangeli, L., Palumbo, P., Rotundi, A., Bussoletti, E., and Strazzulla, G. (1997) Ultraviolet spectral changes in amorphous carbon grains induced by ion irradiation, Astrophys. J. 481, 545–549.

    Article  ADS  Google Scholar 

  14. Rotundi, A., Rietmeijer, F.J.M., Colangeli, L., Mennella, V., Palumbo, P., and Bussoletti, E. (1998) Evidence of inherent forms of carbon in soot materials of astrophysical interest, Astron. Astrophys. 329, 1087–1096.

    ADS  Google Scholar 

  15. Rotundi, A., Rietmeijer, F.J.M., Colangeli, L., Mennella, V., Palumbo, P., and Bussoletti, E. (1997) Chain-like aggregates of amorphous carbon grain: modifications induced by hydrogen content, in preparation.

    Google Scholar 

  16. Hecht, J.H. (1986) A physical model for the 2175 Å interstellar extinction feature, Astrophys. J. 305, 817–822.

    Article  ADS  Google Scholar 

  17. Sorrell, W.H. (1990) The λ 2175 Å feature from irradiated graphitic particles, MNRAS 243, 570–587.

    ADS  Google Scholar 

  18. Harris, P.J.F, Green, M.L.H., Chi Tsang, S. (1993) J. Chem. Soc. Faraday Trans. 89(8), 1189–1192.

    Article  Google Scholar 

  19. Oberlin, A. (1984) Carbonization and graphitization, Carbon 22, 521–541.

    Article  Google Scholar 

  20. Robertson, J. (1986) Amorphous carbon, Adv. Phys. 35, 317–374.

    Article  ADS  Google Scholar 

  21. Robertson, J. (1991) Hard amorphous (diamond-like) carbons, Prog. in Solid State Chem. 21, 199–334.

    Article  Google Scholar 

  22. Marchand, A., (1987) Various kinds of solid carbon: structure and optical properties, Polycyclic Aromatic Hydrocarbons and Astrophysics, Reidel, Dordrecht, pp. 31–54.

    Chapter  Google Scholar 

  23. Baratta, G.A., Arena, M.M., Strazzulla, G., Colangeli, L., Mennella, V., and Bussoletti, E. (1996) Raman spectroscopy of ion irradiated amorphous carbons, Nuc. Inst. Meth. Phys. Res. 116, 195–199.

    Article  ADS  Google Scholar 

  24. Dischler, B., Bubenzer, A., and Koidl, P. (1983) Bonding in hydrogenated hard carbon studied by optical spectroscopy, Solid State Comm. 48, 105–108.

    Article  ADS  Google Scholar 

  25. Jenniskens, P., Baratta, G.A., Kouchi, A., de Groot, M.S., Greenberg, J.M., and Strazzulla, G. (1993) Carbon dust formation on interstellar grains, Astron. Astrophys. 273, 583–600

    ADS  Google Scholar 

  26. Hagen, W., Allamandola, L.J., and Greenberg, J.M. (1979) Interstellar molecule formation in grain mantles: the laboratory analog experiments, results and implications, Astrophys. Space Sci. 65, 215–240.

    Article  ADS  Google Scholar 

  27. Mathis, J.S., Mezger, P., and Panagia, N. (1983) Interstellar radiation field and dust temperatures in the diffuse interstellar matter and in giant molecular clouds, Astron. Astrophys. 128, 212–229.

    ADS  Google Scholar 

  28. Jenniskens, P. (1993) Optical constants of organic refractory residue, Astron. Astrophys. 274, 653–661.

    ADS  Google Scholar 

  29. Strazzulla, G. and Baratta, G.A. (1992) Carbonaceous material by ion irradiation in space, Astron. Astrophys. 266, 434–438.

    ADS  Google Scholar 

  30. Seab, C.G. (1987) Grain destruction, formation, and evolution, Interstellar Processes, Reidel, Dordrecht, pp. 491–512.

    Google Scholar 

  31. McKee, C.F. (1989) Dust destruction in the interstellar medium, Interstellar Dust, Kluwer, Dordrecht, pp. 431–443.

    Chapter  Google Scholar 

  32. Greenberg, J.M. (1989) Interstellar dust: an overview of physical and chemical evolution, Evolution of interstellar dust and related topics, North Holland, Amsterdam, pp. 7–52.

    Google Scholar 

  33. Draine, B.T. and Malhotra, S. (1993) On graphite and the 2175 Åextinction profile, Astrophys. J. 414, 632–645.

    Article  ADS  Google Scholar 

  34. Kim, S., Martin, P.G., and Hendry, P.D. (1994) The size distribution of interstellar dust particles as determined from extinction, Astrophys. J. 422, 164–175.

    Article  ADS  Google Scholar 

  35. Mathis, J.S. (1994) The origin of variations in the 2175 Å extinction bump, Astrophys. J. 422, 176–186.

    Article  ADS  Google Scholar 

  36. Ugarte, D. (1995) Interstellar graphitic particles generated by annealing of nanodiamonds and their relation to the 2175 Å peak carrier, Astrophys. J. 443, L85–L88.

    Article  ADS  Google Scholar 

  37. Schnaiter, M., Mutschke, H., Henning, Th., Lindackers, D., Strecker, M., and Roth, P. (1996) Ultraviolet spectroscopy of matrix isolated amorphous carbon particles, Astrophys. J. 464, L187–190.

    Article  ADS  Google Scholar 

  38. Tokunaga, A.T. and Brook, T.Y. (1990) Did comets form from unaltered interstellar dust and ices ? The evidence from infrared spectroscopy, Icarus 86, 208–219.

    Article  ADS  Google Scholar 

  39. Pendleton, Y.J., Sandford, S.A., Allamandola, L.J., Tielens, A.G.G.M., and Sellgren, K. (1994) Near-infrared absorption spectroscopy of interstellar hydrocarbon grains, Astrophys. J. 437, 683–696.

    Article  ADS  Google Scholar 

  40. Bregman, J.D., Dinerstein, H.L., Goebel, J.H., Lester, D.F., Witteborn, F.C., and Rank, D.M. (1983) Observations of NGC 7027 from 5.2 to 7.5 microns: detection of Ni II and additional dust features, Astrophys. J. 274, 666–670.

    Article  ADS  Google Scholar 

  41. Snow, T.P. and Witt, A.N. (1995) The interstellar carbon budget and the role of carbon in dust and large molecules, Science 270, 1455–1460.

    Article  ADS  Google Scholar 

  42. Mathis, J.S. (1996) Dust models with tight abundance constraints, Astrophys. J. 472, 643–655.

    Article  ADS  Google Scholar 

  43. Li, A., and Greenberg, J.M. (1997) A unified model of interstellar dust, Astron. Astrophys. 323, 566–584.

    ADS  Google Scholar 

  44. Dwek, E. (1997) Can composite fluffy dust particles solve the interstellar carbon crisis?, Astrophys. J. 484, 779–784.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Colangeli, L., Mennella, V., Palumbo, P., Rotundi, A. (1999). Cosmic Dust and Laboratory Simulation: Wishes, Results and Open Problems. In: Greenberg, J.M., Li, A. (eds) Formation and Evolution of Solids in Space. NATO ASI Series, vol 523. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4806-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4806-1_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6018-9

  • Online ISBN: 978-94-011-4806-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics