Skip to main content

Transgenic Cereals: Hordeum vulgare L. (barley)

  • Chapter
Molecular improvement of cereal crops

Part of the book series: Advances in Cellular and Molecular Biology of Plants ((CMBP,volume 5))

Abstract

The development of barley as a crop dates to the earliest agricultural activities of humans, and it remains one of the major cereals grown for feed and food, and for the production of beer. In this century, an understanding and application of quantitative genetic theory has created a genetically elite crop that is divergent from its ancestors. Further improvements in barley cultivare will depend on continued access to useful allelic variability. Sexual hybridization will continue to play an important role in such improvement, but its utility is limited because potentially useful alleles are either linked to undesirable alleles or unavailable because of sexual incompatibilty. The advent of molecular genetics and nonsexual gene transfer offers exciting opportunities to bypass these limitations and to provide access to more diverse sources of genes. Recent developments have added barley to the list of major crops that are amenable to this type of genetic manipulation either through direct DNA transfer (bombardment) or mediated by Agrobacterium tumefaciens. However, significant problems remain, and include: 1) the lack of reproducible, efficient transformation systems for commercial germplasm; 2) the induction of stable genetic and epigenetic changes during the in vitro process; and 3) transgene and transgene expression instability. In this chapter, we will discuss and describe the first systems used for the genetic transformation of barley, introduce and describe the development of new systems for barley transformation, and comment on past and future uses of barley transformation as a tool for basic science and commercial application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahokas, H. (1989) Transfection of germinating barley seeds electrophoretically with exogenous DNA. Theor. Appl. Genet. 77: 469–472.

    Article  CAS  Google Scholar 

  • Armstrong, C.L, and Phillips, R.L. (1988) Genetic and cytogenetic variation in plants regenerated from organogenic and friable embryogenic tissue cultures of maize. Crop Sci. 28: 363–369.

    Article  Google Scholar 

  • Bayley, C.C, Morgan, M, Dale, E.C., and Ow, D.W. (1992) Exchange of gene activity in transgenic plants catalyzed by the Cre-lox site-specific recombination system. Plant Mol. Biol. 18: 353–362.

    Article  PubMed  CAS  Google Scholar 

  • Bechtold, N., Ellis, J., and Pelletier, G. (1993) In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C. R. Acad. Sci. Ser. III 316: 1194–1199.

    CAS  Google Scholar 

  • Biddington, N.L. (1992) The influence of ethylene in plant tissue culture. Plant Growth Reg. 11: 172–187.

    Google Scholar 

  • Bilang, R., Zhang, S., Leduc, N., Iglesias, V.A., Gisel, A., Simmonds, J., Potrykus, I., and Sautter, C. (1993) Transient gene expression in vegetative shoot apical meristems of wheat after ballistic microtargeting. Plant J. 4: 735–744.

    Article  CAS  Google Scholar 

  • Brandt, A., Montembault, A., Cameron-Mills, V., and Rasmussen, S.K. (1985) Primary structure of a Bl hordein gene from barley. Carlsberg Res. Comm. 50: 333–345.

    Article  CAS  Google Scholar 

  • Bregitzer, P. (1992) Plant regeneration and callus type in barley: effects of genotype and culture medium. Crop Sci. 32: 1108–1112.

    Article  Google Scholar 

  • Bregitzer, P., Campbell, R.D., and Wu, Y. (1995a) In vitro response of barley (Hordeum vulgare L) callus: effect of auxins on plant regeneration and karyotype. Plant Cell Tiss. Org. Cult. 43: 229–235.

    CAS  Google Scholar 

  • Bregitzer, P., Campbell, R.D., and Wu, Y. (1995b) Plant regeneration from barley callus: effects of 2,4-dichlorophenoxyacetic acid and phenylacetic acid. Plant Cell Tiss. Org. Cult. 43: 229–235.

    CAS  Google Scholar 

  • Bregitzer, P., and Poulson, M. (1995) Agronomic performance of barley lines derived from tissue culture. Crop. Sci. 35: 1144–1148.

    Article  Google Scholar 

  • Bregitzer, P., Poulson, M., and Jones, B.L. (1995c) Malting quality of barley lines derived from tissue culture. Cereal Chem. 72: 433–435.

    CAS  Google Scholar 

  • Bregitzer, P., Halbert, S.E., and Lemaux, P.G. (1998) Somaclonal variation in the progeny of transgenic barley. Theor. Appl. Genet. 96: 421–425.

    Article  Google Scholar 

  • Brinch-Pedersen, H., Galili, G., Knudsen, S., and Holm, P.B. (1996) Engineering of the aspartate family biosynthetic pathway in barley (Hordeum vulgare L.) by transformation with heterologous genes encoding feedback-insensitive aspartate kinase and dihydrodipicolinate synthase. Plant Mol. Biol. 32: 611–620.

    Article  PubMed  CAS  Google Scholar 

  • Chan, M., Lee, M.T., and Chang, H. (1992) Transformation of indica rice (Oryza sativa L.) mediated by Agrobacterium. Plant Cell Physiol. 33: 577–583.

    CAS  Google Scholar 

  • Chan, M., Chang, H., Ho, S., long, W., and Yu, S. (1993) Agrobacterium-mediated production of transgenic rice plants expressing a chimeric α-amylase promoter/β-glucuronidase gene. Plant Mol. Biol. 22: 491–506.

    Article  PubMed  CAS  Google Scholar 

  • Chen, D.F., and Dale, P.J. (1992) A comparison of methods delivering DNA to wheat: the application of wheat dwarf virus DNA to seeds with exposed apical meristems. Transgen. Res. 1: 93–100.

    Article  CAS  Google Scholar 

  • Cheng, M., Fry, J.E., Pang, S., Zhou, H., Hironaka, CM., Duncan, D.R., Conner, T.W., and Wan, Y. (1997). Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol. 115: 971–980.

    PubMed  CAS  Google Scholar 

  • Chiu, W.L., Niwa, Y., Zeng, W., Hirano, T., Kobayashi, H., and Sheen, J. (1996) Engineered GFP as a vital reporter in plants. Curr. Biol. 6: 325–330.

    Article  PubMed  CAS  Google Scholar 

  • Cho, M.-J., Choi, H.W., Buchanan, B.B., and Lemaux, P.G. (1998a) Inheritance of tissuespecific expression of uidA in transgenic barley plants. Theor. Appl. Genet, (accepted).

    Google Scholar 

  • Cho, M.-J., Jiang, W., and Lemaux, P.G. (1998b) Transformation of recalcitrant cultivars through improvement in regenerability and decreased albinism. Plant Science, in press.

    Google Scholar 

  • Cho, M.-J., Ha, CD., Buchanan, B.B., and Lemaux, P.G. (1998c) Subcellular targeting of barley hordein promoter-uidA fusions in transgenic barley seed. 1998 Cong. In Vitro Biol., p. 1023.

    Google Scholar 

  • Cho, M.-J., and Lemaux, P.G. (1997) Rapid PCR amplification of chimeric products and its direct application to the in vivo testing of recombinant DNA construction strategies. Mol. Biotech. 8: 13–16.

    Article  CAS  Google Scholar 

  • Cho, U., and Kasha, K.J. (1989) Ethylene production and embryogenesis from anther cultures of barley (Hordeum vulgare L.) Plant Cell Rep. 8: 415–417.

    Article  CAS  Google Scholar 

  • Christensen, A.H., and Quail, P.H. (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgen. Res. 5: 1–6.

    Article  Google Scholar 

  • Conner, J.A., Stein, T., Tantikanjana, C, Kandasamy, M.K., Nasrallah, J.B., and Nasrallah, M.E. (1997) Transgene-induced silencing of 5-locus genes and related genes in Brassica. Plant J. 121: 809–823.

    Article  Google Scholar 

  • Czernilofsky, A.P., Hain, R., Herrera-Estrella, L., Goyvaerts, E., Baker, B.J., and Schell, J. (1986) Fate of selectable marker DNA integrated into the genome of Nicotiana tabacum. DNA5: 101–113

    Google Scholar 

  • Dahleen, L.S. (1996) Plant regeneration from barley immature embryos improved by increasing copper levels. Plant Cell Tiss. Org. Cult. 43: 267–269.

    Google Scholar 

  • Day, A., and Ellis, T.H.N. (1985) Deleted forms of plastid DNA in albino plants from cereal anther culture. Curr. Genet. 9: 671–678.

    Article  CAS  Google Scholar 

  • Devaux, P., Kilian, A., and Kleinhofs, A. (1993) Anther culture and Hordeum bulbosum-derived barley doubled haploide: mutations and methylation. Mol. Gen. Genet. 241: 674–679.

    Article  PubMed  CAS  Google Scholar 

  • Devos, K.M., Moore, G., and Gale, M.D. (1995) Conservation of marker synteny during evolution. Euphytica. 85: 367–372.

    Article  CAS  Google Scholar 

  • DeWet, U.R., Wood, K.V., DeLuca, M., and Helinski, D.R. (1987) Firefly luciferase gene: structure and expression in mammalian cells. Mol. Cell Biol. 7: 725–737.

    CAS  Google Scholar 

  • Dunford, R., and Waiden, R.M. (1991) Plastid genome structure and plastid-related transcript levels in albino barley plants derived from anther culture. Curr. Genet. 20: 339–347.

    Article  PubMed  CAS  Google Scholar 

  • Eisinger, W. (1977) Role of cytokinins in carnation flower senescence. Plant Physiol. 59: 707–709.

    Article  PubMed  CAS  Google Scholar 

  • Evans, J.M., and Batty, N.P. (1994) Ethylene precursors and antagonists increase embryogenesis of Hordeum vulgare L. anther culture. Plant Cell Rep. 13: 676–678.

    CAS  Google Scholar 

  • FAO (1992) FAO Yearbook 1992. 46: 71–93

    Google Scholar 

  • Fehr, W.R., and Hadley, H. (1980) Hybridization of crop plants. Amer. Soc. Agron. Crop. Sci., Madison, WI.

    Google Scholar 

  • Fernandez, J.A., Moreno, M., Cannona, M.J., Castagnaro, A., and Garcia-Olmedo, F. (1993) The barley alpha-thionin promoter is rich in negative regulatory motifs and directs tissue-specific expression of a reporter gene in tobacco. Biochim. Biophy. Acta. 1171: 346–348.

    Article  Google Scholar 

  • Finer, I.J., Vain, P., Jones, M.W., and McMullen, M.D. (1992) Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep. 11: 323–328.

    Article  CAS  Google Scholar 

  • Finnie, S.J., Powell, W., and Dyer, A. F. (1989) The effect of carbohydrate composition and concentration on anther culture response in barley (Hordeum vulgare L.) Plant Breed. 103: 110–118.

    Article  CAS  Google Scholar 

  • Finnegan, J., and McElroy, D. (1994) Transgene inactivation: plants fight back! Bio/ Technology 12: 883–888.

    Google Scholar 

  • Flavell, R. B. (1994) Inactivation of gene expression in plants as a consequence of specific sequence duplication. Proc. Nat. Acad. Sci. USA. 91: 3490–3496.

    Article  PubMed  CAS  Google Scholar 

  • Fletcher, R. A. (1969) Retardation of leaf senescence by benzyladenine in intact bean plants. Planta. 89: 1–8.

    Article  CAS  Google Scholar 

  • Funatsuki, H., Lazzeri, P. A., and Lörz, H. (1992) Use of feeder cells to improve barley protoplast culture and plant regeneration. Plant Sci. 85: 251–254.

    Article  Google Scholar 

  • Funatuski, H., Kuroda, M., Lazzeri, P. A., Müller, E., Lörz, H., and Kishinami, I. (1995) Fertile transgenic barley generated by direct DNA transfer to protoplasts. Theor. Appl. Genet. 91: 707–712.

    Google Scholar 

  • Gasser, C.A., and Fraley, R.T. (1989) Genetically engineering plants for crop improvement. Science. 244: 1293–1299.

    Article  PubMed  CAS  Google Scholar 

  • Gautier, M., Lullien-Pellerim, V., deLamotte-Guéry, F., Güimo, A., and Joudrier, P. (1998) Characterization of wheat thioredoxin h: cDNA and production of an active Triticum aestivum protein in Escherichia coli. Eur. J. Biochem. 252: 314–324.

    Article  PubMed  CAS  Google Scholar 

  • Gengenbach, B.G., Green, C.E., and Donovan, C.M. (1977) Inheritance of selected pathotoxin resistance in maize plants regenerated from cell cultures. Proc. Nat. Acad. Sci. USA. 74: 5113–5117.

    Article  PubMed  CAS  Google Scholar 

  • Ghaemi, M., Sarrafi, A., and Alibert, G. (1994) The effect of silver nitrate, colchicine, cupric sulfate and genotype on the production of embryoids from anthers of tetraploid wheat (Triticum turgidum). Plant Cell Tiss Org. Cult. 36: 355–359.

    Article  CAS  Google Scholar 

  • Gordon-Kamm, W.J., Spencer, T.M., Mangano, M.L., Adams, T.R., Daines, R.J., Start, W.G., O’Brien, J.V., Chambers, S.A., Adams, W.R. Willetts, N.G., Rice, T.B., Mackey, C.J., Krueger, R.W., Kausch, A.P., and Lemaux, P.G. (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell. 2: 603–618.

    PubMed  CAS  Google Scholar 

  • Grosset, J., Alary, R., Gautier, M., Menossi, M., Martinez-Izquierdo, J.A., and Joudrier, P. (1997) Characterization of a barley gene coding for an alpha-amylase inhibitor subunit (CMd protein) and analysis of its promoter in transgenic tobacco plants and in maize kernels by microprojectile bombardment. Plant Mol. Biol. 34: 331–338.

    Article  PubMed  CAS  Google Scholar 

  • Haccius, B. (1978) Question of unicellular origin of non-zygotic embryos in callus cultures. Phytomorphology. 28: 74–81.

    Google Scholar 

  • Hagio, T., Hirabayashi, T., Machii, H., and Tomotsune, H. (1995) Production of fertile transgenic barley (Hordeum vulgare L.) plant using the hygromycin-resistance marker. Plant Cell Rep. 14: 329–334.

    CAS  Google Scholar 

  • Hang, A., and Bregitzer, P. (1993) Chromosomal variations in immature embryo-derived calli from six barley cultivars. J. Hered. 84: 105–108.

    Google Scholar 

  • Hänsch, R., Koprek, T., Heydemann, H., Mendel, R. R., and Schulze, J. (1996) Electroporation-mediated transient gene expression in isolated scutella of Hordeum vulgare. Physiol. Plant. 98: 20–27.

    Article  Google Scholar 

  • Hanzel, J.J., Miller, J.P., Brinkmann, M. A., and Fendos, E. (1985) Genotype and media effects on callus formation and regeneration in barley. Crop. Sci. 25: 27–31.

    Article  Google Scholar 

  • Harlan, J.R. (1979) Barley: Origin, Botany, Culture, Winter Hardiness, Genetics, Utilization, Pests, Agricultural Handbook No. 338, United States Department of Agriculture, Washington D.C., pp. 10–36.

    Google Scholar 

  • Haseloff, J., Siemering, K.R., Prahser, D.C., and Hodge, S. (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc. Nat. Acad. Sci. USA. 94: 2122–2127.

    Article  PubMed  CAS  Google Scholar 

  • Hayes, P.M., Chen, F.Q., Kleinhofs, A., Kilian, A., and Mather, D.E. (1996) Barley genome mapping and its applications in methods of genome analysis in plants. In: Jauhar, P.P. (ed.), Methods of Genome Analysis in Plants, pp. 229–249. CRC Press, Inc.

    Google Scholar 

  • Hiei, Y., Ohta, S., Komari, T., and Kumashiro, T. (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6: 271–282.

    CAS  Google Scholar 

  • Holm, P.B., Knudsen, S., Mouritzen, P., Negri, D., Olsen, F.L., and Roue, C. (1994) Regeneration of fertile barley plants from mechanically isolated protoplasts of the fertilized egg cell. Plant Cell 6: 531–543.

    PubMed  CAS  Google Scholar 

  • Holm, P.B., Brinch-Pedersen, H., Oisen, O., Jørgensen, A.B., Sandager, L.D., Sørensen, L.D., and Knudsen, S. (1996) Transformation of barley for improved malting quality. Internat. Conf. Agrie. Biotec, Saskatoon, Saskatchewan, Canada, pp. 11–14.

    Google Scholar 

  • Hunter, C.P. (1988) Plant regeneration from microspores of barley, Hordeum vulgare. Ph.D. thesis, Wye College, University of London, Ashford, Kent.

    Google Scholar 

  • Ishida, Y, Saito, H., Ohta, S., Hiei, Y, Komari, T., and Kumashiro, T. (1996). High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnology 14: 745–750.

    CAS  Google Scholar 

  • Jackson, D., Veit, B., and Hake, S. (1994) Expression of maize knotted1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120: 405–413.

    CAS  Google Scholar 

  • Jähne, A., Becker, D., Brettschneider, R., and Lörz, H. (1994) Regeneration of transgenic, microspore-derived, fertile barley. Theor. Appl. Genet. 89: 525–533.

    Article  Google Scholar 

  • Jefferson, R. A., Kavanagh, T.A., and Bevan, M.W. (1987) Gus fusions beta glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901–3907.

    PubMed  CAS  Google Scholar 

  • Jensen, L.G., Olsen, O., Kops, O., Wolf, N., and Thomsen, K. K. (1996) Transgenic barley expressing a protein-engineered, thermostable (l,3-l,4)-β-glucanase during germination. Proc. Nat. Acad. Sci. USA. 93: 3487–3491.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, W., Cho, M.-J., and Lemaux, P.G. (1998) Improved callus quality and prolonged regenerability in model and recalcitrant barley (Hordeum vulgare L.) genotypes. Plant Biotechnology, 15: 63–69.

    Article  CAS  Google Scholar 

  • Jorgensen, A.B. (1996) Barley transformation for sense and antisense expression of two defense response genes induced by powdery mildew. Thesis #L8349, Section for Plant Pathology, Department of Plant Biology, Carlsberg Research Laboratory, The Carlsberg Research Center, Copenhagen, April 1996.

    Google Scholar 

  • Junker, B., Zimmy, J., Liihrs, R., and Lörz., H. (1987) Transient expression of chimeric genes in dividing and nondividing cereal protoplasts after PEG induced DNA uptake. Plant Cell Rep. 6: 329–332.

    Article  CAS  Google Scholar 

  • Kaeppler, S.M., and Phillips, R.L. (1993a) Tissue culture-induced DNA methylation variation in maize. Proc. Nat. Acad. Sci. USA. 90: 8773–8776.

    Article  PubMed  CAS  Google Scholar 

  • Kaeppler, S.M. and Phillips, R.L. (1993b) DNA methylation and tissue culture-induced variation in plants. In Vitro Cell. Dev. Biol. 29: 125–130.

    Google Scholar 

  • Kartha, K. K., Chibbar, R. N., Georges, R, Leung, N., Caswell, K., Kendall, E., and Qureshi, J. (1989) Transient expression of chloramphenicol acetyltransferase (CAT) gene in barley cell cultures and immature embryos through microprojectile bombardment. Plant Cell Rep. 8: 429–432.

    Article  CAS  Google Scholar 

  • King, S.P., and Kasha, K.J. (1994) Optimizing somatic embryogenesis and particle bombardment of barley (Hordeum vulgare L.) immature embryos. In Vitro Cell Dev. Biol. 30P: 117–123.

    Google Scholar 

  • Kemper, E.L., da Silva, M.J., and Amida, P. (1996) Effect of microprojertile bombardment parameters and osmotic treatment on particle penetration and tissue damage in transiently transformed cultured immature maize (Zea mays L.)embryos. Plant Sci. 121: 85–93.

    Article  Google Scholar 

  • Kihara, M., Okada, Y, Kuroda, H., Saeki, K., Ito, K., and Yoshigi, N. (1997) Generation of fertile transgenic barley synthesizing thermostable β-amylase. 26th European Brewing Convention Congress, Maastricht, Netherlands, October 20-21, 1997. J. Inst. Brewing. 103: 153.

    Google Scholar 

  • Kihara, M., Takahashi, S., Funatsuki, H., Ito, K. (1998) Field performance of the progeny of protoplast-derived barley, Hordeum vulgare 1. Breeding Sci. 481–484.

    Google Scholar 

  • Kjaerulff, S. (1995) Antisense repression of PsaE mRNA in transgenic barley (Hordeum vulgare L.). In: Pathis, P. (ed.), Photosynthesis: from Light to Biosphere, pp. 151–154. Kluwer Academic Publishers.

    Google Scholar 

  • Kle, H., Horsch, R., and Rogers, S. (1987) Agrobacterium-mediated transformation and its further application to plant biology. Ann. Rev. Plant Physiol. 38: 467–486.

    Article  Google Scholar 

  • Knudsen, S., and Müller, M. (1991) Transformation of the developing barley endosperm by particle bombardment. Planta. 185: 330–336.

    Article  CAS  Google Scholar 

  • Koncz, C, Martini, N., Mayerhofer, R., Koncz-Kalman, Z., Körber, H., Redei, G.P., and Schell, J. (1989). High-frequency T-DNA-mediated gene tagging in plants. Proc. Nat. Acad. Sci. USA. 86: 8467–8471.

    Article  PubMed  CAS  Google Scholar 

  • Koprek, T., Haensch, R., Nerlich, A., Mendel, R. R., and Schulze, J. (1996) Fertile transgenic barley of different cultivars obtained by adjustment of bombardment conditions to tissue response. Plant Sci. 119: 79–91.

    Article  CAS  Google Scholar 

  • Kristensen, B.K., Brandt, J., Bojsen, K., Thordal-Christensen, H., Kerby, K.B., Collinge, D.B., Mikkelsen, J.D., and Rasmussen, S.K. (1997) Expression of a defense-related intercellular barley peroxidase in transgenic tobacco. Plant Sci. 122: 173–182.

    Article  CAS  Google Scholar 

  • Larkin, P.J., and Scowcroft, W.R. (1981) Somaclonal variation-a novel source of variabilty from cell cultures for plant improvement. Theor. Appl. Genet. 60: 197–214.

    Article  Google Scholar 

  • Lazzeri, P. A., Brettschneider, R., Liihrs, R., and Lorz, H. (1991). Stable transformation of barley via PEG-induced direct DNA uptake into protoplasts. Theor. Appl. Genet. 81: 437–444.

    Article  Google Scholar 

  • Leckband, G., and Lörz, H. (1998) Transformation and expression of a stilbene synthase gene of Vitis vinifera L. in barley and wheat for increased fungal resistance. Theor. Appl. Genet. 1004–1012.

    Google Scholar 

  • Leduc, N., Matthys-Rochon, E., Rougier, M., Mogensen, L., Holm, P., Magnard, J., and Dumas, C. (1996). Isolated maize zygotes mimic in vivo embryonic development and express microinjected genes when cultured in vitro. Dev. Biol. 177: 190–203.

    Article  PubMed  CAS  Google Scholar 

  • Lee, B.T., Murdock, K., Topping, J., Kreis, M., and Jones, M.G.K. (1989) Transient gene expression in aleurone protoplasts isolated from developing caryopses of barley and wheat. Plant Mol. Biol. 13: 21–29.

    Article  PubMed  CAS  Google Scholar 

  • Lee, B.T., Murdoch, K., Topping, J., Jones, M.G.K., and Kreis, M. (1991) Transient expression of foreign genes introduced into barley endosperm protoplasts by PEG-mediated transfer or into intact endosperm tissue by microproj ertile bombardment. Plant Sci. 78: 237–246.

    Article  CAS  Google Scholar 

  • Leffel, S.M., Mabon, S.A., and Stewart, Jr. C.N. (1997) Applications of green fluorescent protein in plants. Biotechniques. 23: 912–918.

    PubMed  CAS  Google Scholar 

  • Lemaux, P.G., Cho, M.-J., Louwerse, J., Williams, R., and Wan, Y. (1996) Bombardmentmediated transformation methods for barley. Bio-Rad. US/EG Bull. 2007: 1–6.

    Google Scholar 

  • Lidon, F.C., Da Graca Barreiro, M., and Santos Henriquez, F. (1995) Interactions between biomass production and ethylene biosynthesis in copper-treated rice. J. Plant Nutr. 18: 1301–1314.

    Article  CAS  Google Scholar 

  • Lister, R.M. (1995) Distribution and economic importance of barley yellow dwarf. In: D’Arcy, C.J., and Burnett, P. A. (eds), Barley yellow dwarf: 40 years of progress, pp. 29–53. American Phytopathological Society Press, St. Paul MN.

    Google Scholar 

  • Lowe, K., Bowen, B., Hoerster, G., Ross, M., Bond, D., Pierre, D., and Gordon-Kamm, W. (1995). Germline transformation of maize following manipulation of chimeric shoot meristems. Bio/Technology. 13: 677–682.

    Article  CAS  Google Scholar 

  • Lowe, K., Sandahl, M.R.G., Miller, M., Howerster, G., Church, L., Tagliani, L., Bond, D., and Gordon-Kamm, W. (1997). Transformation of the maize apical meristem: transgenic sector reorganization and germline transmission. In: Tsaftaris, A.S. (ed.), Genetics, Biotechnology and Breeding of Maize and Sorghum, pp. 94–97. Thomas Graham House, Cambridge, UK.

    Google Scholar 

  • Liihrs, R., and Lörz, H. (1987) Plant regeneration in vitro from embryogenic cultures of spring— and winter-type barley (Hordeum vulgare L.) varieties. Theor. Appl. Genet. 75: 16–25.

    Google Scholar 

  • Lupotto, E. (1984) Callus induction and plant regeneration from barley mature embryos. Ann. Bot. 54: 523–529.

    Google Scholar 

  • Lyznik, L.A., Mitchell, J.C, Hirayama, L., and Hodges, T.K. (1993) Activity of yeast Flp recombinase in maize and rice protoplasts. Nuc. Acids Res. 21: 969–975.

    Article  CAS  Google Scholar 

  • Mann, C. (1997) Reseeding the green revolution. Science. 277: 1038–1043.

    Article  CAS  Google Scholar 

  • Mannonen, L., Ritala, A., Nuutila, A.M., Kurten, U., Kauppinen, V., Aspegren, K., Teeri, T.H., Aikasalo, R., and Tammisola, J. (1997) Thermotolerant fungal glucanase in malting barley. 26th European Brewing Convention Congress, Maastricht, Netherlands, October 20-21, J. of the Inst, of Brewing 103: 148–149.

    Google Scholar 

  • Marris, C, Gallois, P., Copley, J., and Kreis, M. (1988) The 5′ flanking region of a barley B hordein gene controls tissue and developmental specific CAT expression in tobacco plants. Plant Mol. Biol. 10: 359–366.

    Article  CAS  Google Scholar 

  • Matzke, M. A., and Matzke, A.J.M. (1995) How and why do plants inactivate homologous (trans) genes? Plant Physiol. 107: 679–685.

    PubMed  CAS  Google Scholar 

  • McElroy, D., and Jacobsen, J. (1995) What’s brewing in barley biotechnology? Bio/Technology 13: 245–249.

    Article  CAS  Google Scholar 

  • McElroy, D., Louwerse, J.D., McElroy, S.M., and Lemaux, P.G. (1997) Development of a simple transient assay for Ac-Ds activity in cells of intact barley tissue. Plant J. 11: 157–165.

    Article  PubMed  CAS  Google Scholar 

  • McGrath, PR, Vincent, J.R., Lei, C, Pawlowski, W.P., Torbert, K.A., Gu, W., Kaeppler, H.F., Wan, Y, Lemaux, P.G., Rines, H.R., Somers, D.A., Larkins, B.A., and Lister, R. A. (1997) Coat protein-mediated resistance to isolates of barley yellow dwarf in oats and barley. Eur. J. Plant Path., 103: 695–710.

    Article  CAS  Google Scholar 

  • Medförd, J. (1992) Vegetative apical meristems. Plant Cell 4: 1029–1039.

    PubMed  Google Scholar 

  • Mendel, R. R., Clauss, E., Hellmund, R., Schulze, J., Steinbiß, H.H., and Tewes, A. (1990) Gene transfer to barley. In: Nijkamp, H.J.J., Van der Pias, L.W.W., and Van Aartrijk, J. (eds), Progress in Plant Cellular and Molecular Biology, pp 73–78. Kluwer Academic Publishers, Dordrecht.

    Chapter  Google Scholar 

  • Mendel, R. R., Muller, B., Schulze, J., Kolesnikov, V, and Zelenin, A. (1989) Delivery of foreign genes to intact barley cells by high-velocity microprojectiles. Theor. Appl. Genet. 78: 31–34.

    Article  CAS  Google Scholar 

  • Michel, M., (1995) Ãœbertragung von H. bulbosum — Resistenzgenen gegenüber mehltau und gerstengelbmosaikvirus in die kulturgerste. Vort Pflanzenzuchtg. 31: 78–79.

    Google Scholar 

  • Moore, G. (1995) Cereal genome evolution: Pastoral pursuits with ‘Lego’ genomes. Curr. Opin. Genet. Dev. 5: 717–724.

    Article  PubMed  CAS  Google Scholar 

  • Moore, G., Cheung, W., Schwarzacher, T., and Flavell, R. (1991) BIS 1, a major component of the cereal genome and a tool for studying genomic organization. Genomics. 10: 469–476.

    Article  PubMed  CAS  Google Scholar 

  • Momhinweg, D.W., Porter, D.R., and Webster, J.A. (1995) Registration of STARS-9301B barley germplasm resistant to the Russian wheat aphid. Crop. Sci. 35: 603.

    Article  Google Scholar 

  • Mouritzen, P., and Holm, P.B. (1994) Chloroplast genome breakdown in microspore cultures of barley (Hordeum vulgare L.) occurs primarily during regeneration. J. Plant Physiol. 144: 586–593.

    Article  CAS  Google Scholar 

  • Munck, C.M. (1993) Whole-crop utilization of barley, including potential new uses. In: MacGregor, A.W., and Bhatty, R.S. (eds), Barley: Chemistry and Technology, pp. 437–474. Amer. Assoc. Cereal Chem., St. Paul, MN.

    Google Scholar 

  • Murashige, T., and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497.

    Article  CAS  Google Scholar 

  • Nelson, A.J., and Bushneil, W.R. (1997) Transient expression of anthocyanin genes in barley epidermal cells: Potential for use in evaluation of disease response genes. Transgen. Res. 6: 233–244.

    Article  CAS  Google Scholar 

  • Oard, J. H., Paige, D.F., Simmonds, J.A., and Gradziel, T.M. (1990) Transient gene expression in maize, rice and wheat cells using an airgun apparatus. Plant Physiol. 92: 334–339.

    Article  PubMed  CAS  Google Scholar 

  • Ohkoshi, S., Komatsuda, T., Enomoto, S., Taniguchi, M., and Ohyama, K. (1991) Variations between varieties in callus formation and plant regeneration from immature embryos of barley. Bull Nat. Inst. Agrobiol. Resour. 6: 189–207.

    Google Scholar 

  • Pang, S., DeBoer, D. L., Wan, Y, Ye, G., Layton, J. G., Neher, M.K., Armstrong, C. L., Fry, J.E., Hinchee, M. A., and Fromm, M.E. (1996) An improved green fluorescent protein gene as a vital marker in plants. Plant Physiol. 112: 893–900.

    Article  PubMed  CAS  Google Scholar 

  • Park, S.H., Pinson, S.R.M., and Smith, R. H. (1996) T-DNA integration into genomic DNA of rice following Agmbacterium inoculation of isolated shoot apices. Plant Mol. Biol. 32: 1135–1148.

    Article  PubMed  CAS  Google Scholar 

  • Perl, A., Galili, E., Shaul, I., Ben-Tzvi, I., and Galili, G. (1993) Bacterial dihydrodipicolinate synthase and desensitized aspartate kinase: two novel selectable markers for plant transformation. Bio/Technology. 11: 715–718.

    Article  CAS  Google Scholar 

  • Phillips, R.L., Kaeppler, S.M., and Olhoft, P. (1994) Genetic instability of plant tissue culture: breakdown of normal controls. Proc. Nat. Acad. Sci. USA. 91: 5222–5226.

    Article  PubMed  CAS  Google Scholar 

  • Pickering, R. A., Hill, A.M., and Kynast, R.G. (1997) Characterization by RFLP analysis and genomic in situ hybridization of a recombinant and a monosomic substition plant derived from Hordeum vulgare L. X. H. bulbosum L. crosses. Genome 40: 195–200.

    CAS  Google Scholar 

  • Pickering, R. A., Hill, A.M., Michel, M., and Timmerman-Vaughan, G.M. (1995) The transfer of a powdery mildew resistance gene from Hordeum bulbosum to barley (H. vulgare L.) chromosome 2 (21). Theor. Appl. Genet. 91: 1288–1292.

    Article  CAS  Google Scholar 

  • Potrykus, I. (1990a) Gene transfer to cereals: an assessment. Bio/Technology 8: 535–542.

    Article  CAS  Google Scholar 

  • Potrykus, I. (1990b) Gene transfer to plants: assessment and perspectives. Physiol. Plant. 79: 125–134.

    Article  CAS  Google Scholar 

  • Potrykus, I. (1992) Micro-targeting of microprojectiles to target areas in the micrometre range. Nature 355: 568–569.

    Article  Google Scholar 

  • Purnhauser, L. (1991) Stimulation of shoot and root regeneration in wheat Triticum aestivum callus cultures by copper. Cereal Res. Comm. 19: 419–423.

    CAS  Google Scholar 

  • Raho, G., Lupotto, E., Hartings, H., Torre, P.A.D., Perrotta, C, and Armiroli, N. (1996) Tissue-specific expression and environmental regulation of the barley Hvhsp 17 gene promoter in transgenic tobacco plants. J. Exp. Bot. 47: 1587–1594.

    Article  CAS  Google Scholar 

  • Rasmusson, D.C. (1985) Barley. American Society of Agronomy, Number 26.

    Google Scholar 

  • Rines, H.W., and Luke, H.H. (1985) Selection and regeneration of toxin-insensitive plants from tissue cultures of oats (Avena sativa) susceptible to Helminthosporium victorea. Theor. Appl. Genet. 71: 16–21.

    Article  Google Scholar 

  • Risseeuw, E., Franke-Van Dijk, M.E.I., and Hooykaas, P.J.J. (1997) Gene targeting and instability of Agrobacterium T-DNA loci in the plant genome. Plant J. 11: 717–728.

    Article  PubMed  CAS  Google Scholar 

  • Ritala, A., Aikasalo, R., Aspegren, K., Salmenkallio-Marttila, M., Ã…kerman, S., Mannonen, L., Kurten, U., Puupponen-Pimia, R., Teeri, TH., and Kauppinen, V. (1995) Transgenic barley by particle bombardment. Inheritance of the transferred gene and characteristics of transgenic barley plants. Euphytica. 85: 81–88.

    Google Scholar 

  • Ritala, A., Apegren, K., Kurten, U., Salnienkallio-Marttila, M., Mannonen, L., Hannus, R., Kauppinen, V., Teeri, T.H., and Enari, T. (1994) Fertile transgenic barley by particle bombardment of immature embryos. Plant Mol. Biol. 24: 317–325.

    Article  PubMed  CAS  Google Scholar 

  • Ritala, A., Mannoen, L., Aspegren, K., Salmenkaillo-Marttila, M., Kurtén, U., Hannus, R., Mendez-Lozano, J., Teeri, T.H., and Kauppinen, V. (1993) Stable transformation of barley tissue culture by particle bombardment. Plant Cell Rep. 12: 434–440.

    Article  Google Scholar 

  • Roemer, T., Scheibe, A., Schmidt, J., and Woermann, E. (1953) Handbuch der Landwirtschaft II, Pflanzenbaulehre, pp. 67–77. Paul Parey Verlag, Berlin and Hamburg.

    Google Scholar 

  • Rogers, S.W., and Rogers, J.C. (1992) The importance of DNA methylation for stability of foreign DNA in barley. Plant Mol. Biol. 18: 945–961.

    Article  PubMed  CAS  Google Scholar 

  • Salnienkallio-Marttila, M., Aspegren, K., Ã…kerman, S., Kurtén, U., Mannonen, L., Ritala, A., Teeri, T.H., and Kauppinen, V. (1995) Transgenic barley (Hordeum vulgare L.) by electroporation of protoplasts. Plant Cell Rep. 15: 301–304.

    Google Scholar 

  • Sandager, L. (1996) Engineering of barley for enhanced levels of lipid transfer protein 1 in the seed. Thesis #890564, Institut for Molekyloer Biologi, Laboratoriet for Genekspression, Aarhus Universitet, Aarhus.

    Google Scholar 

  • Sautter, C, Waldner, H., Neuhaus-Uri, G., Galli, A., Neuhaus, G., and Potrykus, I. (1991) Micro-targeting: high efficiency gene transfer using a novel approach for the acceleration of microprojectiles. Bio/Technology 9: 1080–1085.

    Article  PubMed  CAS  Google Scholar 

  • Schaller, C.W., Rasmusson, D.C., and Qualset, CO. (1963) Sources of resistance to yellow dwarf virus in barley. Crop. Sci. 3: 342–344.

    Article  Google Scholar 

  • Schildbach, R. (1994) Malting barley worldwide. Brauwelt Internat. 4: 292–310.

    Google Scholar 

  • Schuh, W., Nelson, M.R., Bigelow, D.M., Orum, T.V., Orth, C.E., Lynch, P.T., Eyles, P.S., Blackhall, N.W., Jones, J., Cocking, E.C., and Davey, M.R. (1993) The phenotypic characterisation of R-2 generation transgenic rice plants under field conditions. Plant Sci. 89: 69–79.

    Article  CAS  Google Scholar 

  • Scott, P., and Lyne, R.L. (1994a) The effect of different carbohydrate sources upon the initiation of embryogenesis from barley microspores. Plant Cell Tiss. Org. Cult. 36: 129–133.

    Article  CAS  Google Scholar 

  • Scott, P., and Lyne, R.L. (1994b) Initiation of embryogenesis from cultured barley microspores: a further investigation into the toxic effects of sucrose and glucose. Plant Cell Tiss. Org. Cult. 37: 61–65.

    Article  CAS  Google Scholar 

  • Sears, R.G., and Deckard, E.L. (1982) Tissue culture variability in wheat: callus induction and plant regeneration. Crop Sci. 22: 546–550.

    Article  Google Scholar 

  • Shewry, P.R., Tatham, A.S., Halford, N.G., Barker, J. H.A., Hannappel, U., Gallois, P., Thomas, M., and Kreis, M. (1994) Opportunities for manipulating the seed protein composition of wheat and barley in order to improve quality. Transgen. Res. 3: 3–12.

    Article  CAS  Google Scholar 

  • Simmonds, J.A., Stewart, P., and Simmonds, D. (1992). Regeneration of Triticum aestivum apical expiants after microinjection of germ line progenitor cells with DNA. Physiol Plant. 85: 197–206.

    Article  CAS  Google Scholar 

  • Singh, R.J. (1986) Chromosomal variation in immature embryo derived calluses of barley Hordeum vulgare. L). Theor. Appl. Genet. 72: 710–7

    Article  Google Scholar 

  • Smith, L.G., Greene, B., Veit, B., and Hake, S. (1992) A dominant mutation in the maize homeobox gene, Knotted-1, causes its ectopic expression in leaf cells with altered fates. Development 116: 21–30.

    PubMed  CAS  Google Scholar 

  • Smith, L.G., Jackson, D., and Hake, S. (1995) Expression of knotted1 marks shoot meristem formation during maize embryogenesis. Dev. Genet. 16: 344–348.

    Article  Google Scholar 

  • Songstad, D.D., Somers, D.A., and Griesbach, R.J. (1995) Advances in alternative DNA delivery techniques. Plant Cell Tiss. Org. Cult. 40: 1–15.

    Article  CAS  Google Scholar 

  • Sorensen, M.B., Müller, M., Skerritt, J., and Simpson, D. (1996) Hordein promoter methylation and transcriptional activity in wild-type and mutant barley endosperm. Mol. Gen. Genet. 250: 750–760.

    Article  PubMed  CAS  Google Scholar 

  • Spencer, T.M., O’Brien, J.V., Start, W.G., Adams, T.R., Gordon-Kamm, W.J., and Lemaux, P.G. (1992) Segregation of transgenes in maize. Plant Mol. Biol. 18: 201–210.

    Article  PubMed  CAS  Google Scholar 

  • Sprenger, N., Schellenbaum, L., Van Dun, K., Boiler, T., and Wiemken, A. (1997) Fructan synthesis in transgenic tobacco and chicory plants expressing barley sucrose:fructan 6-fructosyltransferase. FEBS Lett. 400: 355–358.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava, V., Vasil, V., and Vasil, I. K. (1996) Molecular characterization of the fate of transgenes in transformed wheat (Triticum aestivum L.) Theor. Appl. Genet. 92: 1031–1037.

    Article  CAS  Google Scholar 

  • Steeves, T.A., and Sussex, I.M. (1989) Patterns in Plant Development, 2nd edition. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Stewart, R.J., Hodges, S., Hrmova, M., Garrett, T.P.J., Varghese, J.N., Hoj, P.B., and Fincher, G.B. (1997) Protein engineering of thermostable barley beta-glucanases and their commercial evaluation. (1997 American Association of Cereal Chemists Annual Meeting, San Diego, California, U.S.A., October 12-16) Cereal Foods World, v. 42, n. 8, (1997): 662–663.

    Google Scholar 

  • Stiff, CM., Kilian, A., Zhou, H., Kudrna, D.A., and Kleinhofs, A. (1995) Stable transformation of barley callus using biolistic particle bombardment and the phosphinothricin acetyltransferase (bar) gene. Plant Cell Tiss. Org. Cult. 40: 243–248.

    Article  CAS  Google Scholar 

  • Takano, M., Egawa, H., Ikeda, J., and Wakasa, K. (1997) The structures of integration sites in transgenic rice. Plant J. 11: 353–361.

    Article  PubMed  CAS  Google Scholar 

  • ten Hoopen, R., Robbins, T.P., Fransz, P.F., Montijn, B.M., Oud, O., Geräts, A.G.M., and Nanninga, N. (1996) Localization of T-DNA insertions in petunia by fluorescence in situ hybridization: physical evidence for suppression of recombination. Plant Cell. 8: 823–830.

    PubMed  Google Scholar 

  • Thompson, C.J., Novva, N.R., Tizard, T., Crameri, R., Davies, J.E., Lauwereys, M., and Botterman, J. (1987) Characterization of the herbicide-resistance gene bar from Streptomyces hygrtoscopicus. EMBO J. 6: 2519–2523.

    PubMed  CAS  Google Scholar 

  • Thorpe, T.A. (1994) Morphogenesis and regeneration. In: Vasil I. K., and Thorpe, T.A. (eds), Plant Cell and Tissue Culture, pp. 17–36. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Tingay, S., McElroy, D., Kalla, R., Fieg, S., Wang, M., Thornton, S., and Brettell, R. (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J. 11: 1369–1376.

    Article  CAS  Google Scholar 

  • Toyoda, H., Yamaga, X, Matsuda, Y, and Ouchi, S. (1990) Transient expression of the ß-glucuronidase gene introduced into barley coleoptile cells by microinjection. Plant Cell Rep. 9: 299–302.

    Article  CAS  Google Scholar 

  • Ullrich, S.E., Edmiston, J.M., Kleinhofs, A., Kudrna, D.A., and Maatougui, M.E.H. (1991) Evaluation of somaclonal variation in barley. Cereal Res. Comm. 19: 245–260.

    Google Scholar 

  • Vain, P., McMullen, M.D., and Finer, J.J. (1993) Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep. 12: 84–88.

    Article  Google Scholar 

  • Vasil, I. K. (1987) Developing cell and tissue culture systems for the improvement of cereal and grass crops. J. Plant Physiol. 128: 193–218.

    Article  Google Scholar 

  • Vasil, I. K. (1994) Molecular improvement of cereals. Plant Mol. Biol. 25: 925–937.

    Article  PubMed  CAS  Google Scholar 

  • Vidhyasekaran, P., Ling, D.H., Borromeo, E.S., Zapata, F.J., and Mew, T.W. (1990) Selection of brown spot-resistant rice plants from Helminthosporium oryzae toxin-resistant calluses. Ann. Appl. Biol. 117: 515–523.

    Article  Google Scholar 

  • Vollbrecht, E., Veit, B., Sinha, N., and Hake, S. (1991) The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature. 350: 241–243.

    Article  PubMed  CAS  Google Scholar 

  • von Bothmer, R., Jacobsen, N., Baden, C, Jorgensen, R. B., and Linde-Laursen, I. (1995). An ecogeographical study of the genus Hordeum. In: von Bothmer, R. (ed.), Systematic and Ecogeographic Studies on Crop Genepools, 7 (2nd edition), pp. 1–19. International Plant Genetic Resources Institute, Rome.

    Google Scholar 

  • Wan, Y., and Lemaux, P.G. (1994) Generation of large numbers of independently transformed fertile barley plants. Plant Physiol. 104: 37–48.

    PubMed  CAS  Google Scholar 

  • Wang, X., Lazzeri, P. A., and Lörz, H. (1992) Chromosomal variation in dividing protoplasts derived from cell suspensions of barley (Hordeum vulgare L.) Theor. Appl. Genet. 85: 181–185.

    Google Scholar 

  • Williams-Carrier, R., Lie, Y.S., Hake, S., and Lemaux, P.G. (1997) Ectopic expression of the maize kn1 gene phenocopies the Hooded mutant of barley. Development 124: 3737–3745.

    PubMed  CAS  Google Scholar 

  • Xu, J., and Kasha, K.J. (1992) Transfer of a dominant gene for powdery mildew resistance and DNA from Hordeum bulbosum into cultivated barley (H. vulgare). Theor. Appl. Genet. 84: 771–777.

    CAS  Google Scholar 

  • Xu, D., Duan, X., Wang, B., Hong, B., Ho, T., and Wu, R. (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 110: 249–257.

    PubMed  CAS  Google Scholar 

  • Yao, Q.A., Simion, E., William, M., Krochko, J., and Kasha, K.J. (1997) Biolistic transformation of haploid isolated microspores of barley (Hordeum vulgare L.) Genome 40: 570–581.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., Tiwari, V.K., Golds, T.J., Blackhall, N.W., Cocking, E.C., Mulligan, B.J., Power, J.B., and Davey, M.R. (1995) Parameters influencing transient and stable transformation of barley. (Hordeum vulgare L.) protoplasts. Plant Cell Tiss. Org. Cult. 41: 125–138.

    Article  Google Scholar 

  • Zhang, S., Warkentin, D., Sun, B., Zhong, H., and Sticklen, M. (1996a) Variation in the inheritance of expression among subclones for unselected (uidA) and selected (bar) transgenes in maize (Zea mays L.)Theor. Appl. Genet. 92: 752–761.

    Article  CAS  Google Scholar 

  • Zhang, S., Williams-Carrier, R., Jackson, D., and Lemaux, P.G. (1998a) Expression of CDC2Zm and KNOTTED1 during axillary shoot meristem in vitro proliferation and adventitious shoot meristem formation in maize and barley. Planta 204: 542–549.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, S., Zhang, S., Cho, M.-J., Bregitzer, P., and Lemaux, P.G. (1998b) Comparative analysis of genomic DNA methylation status and field performance of plants derived from embryogénie calli and shoot meristematic cultures. Prox. IX Internati. Cong. Plant Tiss. Cell Cult. Jerusalem, Israel (in press).

    Google Scholar 

  • Zhang, S., Zhong, H., and Sticklen, M.B. (1996b) Production of multiple shoots from shoot apical meristems of oat (Avena sativa L.) J. Plant Physiol. 148: 667–671.

    Article  CAS  Google Scholar 

  • Zhong, H., Srinivasan, C, and Sticklen, M.B. (1992) In-vitro morphogenesis of corn (Zea mays L.) I. Differentiation of multiple shoot clumps and somatic embryos from shoot tips. Planta 187: 483–489.

    CAS  Google Scholar 

  • Zhong, H., Sun, B., Warkentin, D., Zhang, S., Wu, R., Wu, T., and Sticklen, M.B. (1996) The competence of maize shoot meristems for integrative transformation and inherited expression of transgenes. Plant Physiol. 110: 1097–1107.

    PubMed  CAS  Google Scholar 

  • Ziauddin, A., and Kasha, K.J. (1990) Long-term callus cultures of diploid barley (Hordeum vulgare) II. Effect of auxins on chromosomal status of cultures and regeneration of plants. Euphytica. 48: 279–286.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lemaux, P.G., Cho, MJ., Zhang, S., Bregitzer, P. (1999). Transgenic Cereals: Hordeum vulgare L. (barley). In: Vasil, I.K. (eds) Molecular improvement of cereal crops. Advances in Cellular and Molecular Biology of Plants, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4802-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4802-3_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6016-5

  • Online ISBN: 978-94-011-4802-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics