Skip to main content

Autonomous Robotic Exploration and Gaze Planning Using Range Sensing

  • Chapter
Advances in Intelligent Autonomous Systems

Abstract

In recent years, a number of robotic applications have appeared in which little is known about the scene structure or the geometry of the robot workspace. It may sometimes be difficult or impossible for humans, due to adverse conditions, to observe and model environments such as nuclear sites with high levels of radioactivity. The examination of these environments and determining the objects present require autonomous sensing and exploration, which in turn involve significant remote and collision-free robotic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Hedberg: Robots Cleaning Up Hazardous Waste, AI Expert, 20-24 (May 1995).

    Google Scholar 

  2. K. Joarder and D. Raviv: Autonomous Obstacle Avoidance Using Visual Fixation and Looming, SPIE Proc: Intelligent Robots and Computer Vision XI, Vol. 1825, pp. 733–744 (1992).

    Google Scholar 

  3. C. A. Shaffer and G. M. Herb: A Real-Time Robot Arm Collision Avoidance System, IEEE Trans. on Robotics and Automation 8, 149–160 (1992).4. P. Whaite and F. Ferrie: Autonomous Exploration: Driven By Uncertainty, Technical Report TR-CIM-93-17, Centre for Intelligent Machines, McGill University, Montréal, QC, Canada (1993).

    Article  Google Scholar 

  4. A. Zelinsky: A Mobile Robot Exploration Algorithm, IEEE Trans. on Robotics and Automation 8, 707–717 (1992).

    Article  Google Scholar 

  5. M. Greenspan and N. Burtnyk: Real Time Collision Detection, United States Patent Number 5, 347,459 (March 1993).

    Google Scholar 

  6. J.-A. Beraldin, M. Rioux, F. Blais, and R. A. Couvillon: Digital Three-Dimensional Imaging in the Infrared at the National Research Council of Canada, SPIE Proc: Int. Symp. on Optics, Imaging, and Instrumentation: Infrared Technology XX, Vol. 2269, San Diego, CA, USA, pp. 208–225 (July 1994).

    Google Scholar 

  7. M. Greenspan, M. Lipsett, J. Ballantyne, P. Renton, E. Gagnon, and N. Burtnyk: Laser Range Vision for Tele-Excavation, Proc. 1995 Robotics and Knowledge Based Systems Workshop, St. Hubert, QC, Canada (Oct. 1995).

    Google Scholar 

  8. P. Renton, M. Greenspan, N. Burtnyk, and H. ElMaraghy: Scan-N-Plan: Collision-Free Autonomous Workspace Exploration, Proc. 1995 Robotics and Knowledge-Based Systems Workshop, St. Hubert, QC, Canada (Oct. 1995).

    Google Scholar 

  9. F. Arman and J. K. Aggarwal, Model-Based Object Recognition in Dense-Range Images — A Review, ACM Computing Surveys 25, 67–108 (1993).

    Article  Google Scholar 

  10. S. Motavalli and B. Bidanda, A Part Image Reconstruction System for Reverse Engineering of Design Modifications, Journal of Manufacturing Systems 10, 383–395 (1991).

    Article  Google Scholar 

  11. R. A. Jarvis: Range Sensing for Computer Vision, Three-Dimensional Object Recognition Systems, A.K. Jain and P.J. Flynn, eds., Elsevier Science Publishers B.V., Amesterdam, The Netherlands, pp. 17–56 (1993).

    Google Scholar 

  12. M. Rioux, Digital 3-D Imaging: Theory and Applications, SPIE Proc, Videometrics III, Int. Symp. on Photonic and Sensors and Controls for Commercial Applications, Vol. 2350, Boston, MA, USA, pp. 2–15 (Oct./Nov. 1994).

    Google Scholar 

  13. J. Maver and R. Bajcsy: Occlusions as a Guide for Planning the Next View, IEEE Trans. on Pattern Analysis and Machine Intelligence 15, 417–432 (1993).

    Article  Google Scholar 

  14. J. E. Banta, Y. Zhien, X. Z. Wang, G. Zhang, M. T. Smith, and M. A. Abidi: A ‘Best-Next-View’ Algorithm for Three-Dimensional Scene Reconstruction Using Range Images, SPIE Proc, Intelligent Robots and Computer Vision XIV: Algorithms, Techniques, Active Vision and Materials Handling, Vol. 2588, Philadelphia, PA, USA, pp. 418–429 (Oct. 1995).

    Article  Google Scholar 

  15. E. Kruse, R. Gutsche, and F. M. Wahl: Efficient, Iterative, Sensor Based 3-D Map Building Using Rating Functions in Configuration Space, Proc. IEEE Int. Conf. on Robotics and Automation, Minneapolis, MN, USA, pp.1067–1072 (April 1996).

    Google Scholar 

  16. Z. Chen and C. Huang: Terrain Exploration of a Sensor-Based Robot Moving among Unknown Obstacles of Polygonal Shape, Robotica 12, 33–44 (1994).

    Article  Google Scholar 

  17. R. H. T. Chan, P. K. S. Tam, and D. N. K. Leung: Robot Navigation in Unknown Terrains via Multi-Resolution Grid Maps, IECON′91, pp. 1138–1143 (1991).

    Google Scholar 

  18. E. R. Stuck, A. Manz, D. A. Green, and S. Elgazzar: Map Updating and Path Planning for Real-Time Mobile Robot Navigation, Proc. IEEE/RSJ/GI Int. Conf. on Intelligent Robots and Systems, Munich, Germany, pp. 753–760 (Sept. 1994).

    Google Scholar 

  19. Y. K. Hwang and N. Ahuja: Gross Motion Planning — A Survey, ACM Computing Surveys 24, 219–291 (1992).

    Article  Google Scholar 

  20. E. Cheung and V. Lumelsky: Motion Planning for a Whole-Sensitive Robot Arm Manipulator, Proc. IEEE Int. Conf. on Robotics and Automation, Cincinnati, OH, USA, pp. 344–349 (May 1990).

    Google Scholar 

  21. J. L. Novak and J. T. Feddema: Capacitive-Based Proximity Sensor for Whole Arm Obstacle Avoidance, Proc. IEEE Int. Conf. on Robotics and Automation, Nice, France, pp. 1307–1313 (May 1992).

    Google Scholar 

  22. K. K. Gupta and X. M. Zhu: Extracting Polyhedral Models from a Range Image: A Hybrid Approach, Computer Vision: Systems, Theory and Applications, A. Basu, ed., World Scientific Press, Singapore (1992).

    Google Scholar 

  23. T. O. Binford: Visual Perception by Computer. Proc. IEEE Conf. on Systems and Control, Miami, FL, USA (1971).

    Google Scholar 

  24. A. A. G. Requicha and H. B. Voelcker: Solid Modeling: A historical Summary and Contemporary Assessment, IEEE Computer Graphics and Applications 2, 9–24 (1982).

    Article  Google Scholar 

  25. T. C. Henderson: Efficient 3-D Object Representations for Industrial Vision Systems, IEEE Trans. on Pattern Analysis and Machine Intelligence 5, 609–617 (1983).

    Article  Google Scholar 

  26. D. J. Meagher: Geometric Modeling Using Octree Encoding, Computer Graphics and Image Processing 19, 129–147 (1981).

    Article  Google Scholar 

  27. M. Greenspan and N. Burtnyk: Obstacle Count Independent Real-Time Collision Avoidance, Proc. IEEE Int. Conf. on Robotics and Automation, Minneapolis, MN, USA, pp. 1073–1080 (April 1996).

    Google Scholar 

  28. S. K. Singh and M. C. Leu, Manipulator Motion Planning in the Presence of Obstacles and Dynamic Constraints, The Int. Journal of Robotics Research 10, 171–187 (1991).

    Article  Google Scholar 

  29. Y. K. Hwang and N. Ahuja: A Potential Field Approach to Path Planning, IEEE Trans. on Robotics and Automation 8, 23–32 (1992).

    Article  Google Scholar 

  30. J. Barraquand and J. C. Latombe: A Monte-Carlo Algorithm for Path Planning with Many Degrees of Freedom, Proc. IEEE Int. Conf. on Robotics and Automation, Cincinnati, OH, USA, pp. 1712–1717 (May 1990).

    Google Scholar 

  31. K. K. Gupta and Z. Guo: Motion Planning for Many Degrees of Freedom: Sequential Search with Backtracking, IEEE Trans. on Robotics and Automation 11, 897–906 (1995).

    Article  Google Scholar 

  32. T. Lozano-Pérez: Spatial Planning: A Configuration Space Approach, IEEE Trans. on Computers C-32, 108–120 (1983).

    Article  Google Scholar 

  33. N. J. Nilsson: Principles of Artificial Intelligence, Morgan Kaufmann Publishers Inc., Los Altos, CA, USA (1980).

    MATH  Google Scholar 

  34. K. S. Fu, R. C. Gonzalez, and C. S. G. Lee: Robotics: Control, Sensing, Vision, and Intelligence, McGraw-Hill, New York, NY, USA (1987).

    Google Scholar 

  35. Y. Roth-Tabak and R. Jain: Building an Environment Model Using Depth Information, Technical Report CSE-TR-07-88 U, E.E. and C.S. Dept., University of Michigan, Ann Arbor, MI, USA (1988).

    Google Scholar 

  36. P. A. M. Renton: Plan-N-Scan: Autonomous Workspace Mapping, Master's Thesis, Department of Mechanical Engineering, McMaster University, Hamilton, ON, Canada (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Renton, P.A.M., Elmaraghy, H.A., Greenspan, M., Zghal, H. (1999). Autonomous Robotic Exploration and Gaze Planning Using Range Sensing. In: Tzafestas, S.G. (eds) Advances in Intelligent Autonomous Systems. International Series on Microprocessor-Based and Intelligent Systems Engineering, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4790-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4790-3_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6012-7

  • Online ISBN: 978-94-011-4790-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics