Skip to main content

Effects of turbidity and biotic factors on the rotifer community in an Ohio reservoir

  • Conference paper
Rotifera VIII: A Comparative Approach

Part of the book series: Developments in Hydrobiology ((DIHY,volume 134))

Abstract

In reservoirs physical horizontal gradients may affect zooplankton distributions as well as the biotic interactions that potentially regulate zooplankton abundance and species composition. We examined patterns of rotifer abundance and population dynamics along a turbidity gradient over a 4-year period in an Ohio reservoir. To analyze the effect of turbidity on rotifer populations we compared rotifer abundance patterns, species composition, birth and death rates at two sites with high turbidity (river site) and low turbidity (dam site) conditions. Because of the potentially important biotic interaction between rotifers and cladocerans, we also compared cladoceran abundance patterns and species composition. Our results suggest no effect of turbidity on rotifers in Acton Lake. Rotifer and cladoceran abundance patterns were similar at low and high turbidity sites. Similarity indices revealed few differences in rotifer and cladoceran species composition between sites. Rotifer birth and death rates were also similar at low and high turbidity sites. In contrast to these homogeneous spatial patterns, among year comparisons indicate high temporal variability in all parameters measured. Mean rotifer densities were similar from 1993 to 1995, but in 1996 density increased 4-fold. Rotifer species assemblages were dominated by Brachionus spp. from 1993 to 1995, while Keratella cochlearis and Polyarthra spp. were numerically dominant in 1996. Mean cladoceran density also increased in 1996 compared to previous years. Cladoceran species composition was dominated by Diaphanosoma birgei from 1993 to 1995, while Daphnia parvula and Bosmina longirostris dominated the 1996 cladoceran community. Comparison of rotifer population parameters in years of contrasting D. parvula abundance suggests that exploitative competition may be an important mechanism regulating rotifer communities in Acton Lake. Interannual variation in Daphnia abundance may in turn be controlled by variation in fish biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Balcer, M. D., N. L. Korda, & S. I. Dodson, 1984. Zooplar kton of the Great Lakes: A Guide to the Identification and Ecology of the Common Crustacean Species. The University of Wisconsin Press, Wisconsin.

    Google Scholar 

  • Betsill, R. K. and M. J. Van Den Avyle, 1994. Spatial heterogeneity of reservoir zooplankton: a matter of timing? Hydrobiologia 277: 63–70.

    Article  Google Scholar 

  • Burns, C. W. & J. J. Gilbert, 1986. Direct observations of the mechanisms of interference between Daphnia and Keratella cochlearis. Limnol. Oceanogr. 31: 859–866.

    Article  Google Scholar 

  • Bruton, M. N., 1985. The effects of suspensoids on fish. Hydrobiologia 125: 221–241.

    Article  Google Scholar 

  • Cuker, B. E., 1987. Field experiment on the influences of suspended clay and P on the plankton of a small lake. Limnol. Oceanogr. 32: 840–847.

    Article  CAS  Google Scholar 

  • Daniel, P. M., 1972. Acton Lake: biology of its benthos and notes on its physical limnology 1959–1970. Ohio J. Sci. 72: 241–253.

    Google Scholar 

  • Dettmers, J. M. & R. A. Stein, 1992. Food consumption by larval gizzard shad: zooplankton effects and implications for reservoir communities. Trans. am. Fish. Soc. 121: 494–507.

    Article  Google Scholar 

  • DeVries, D. R. & R. A. Stein, 1992. Complex interactions between fish and Zooplankton: quantifying the role of an open-water planktivore. Can. J. Fish. Aquat. Sci. 49: 1216–1227.

    Article  Google Scholar 

  • Drenner, R. W., S. T. Threlkeld & M. D. McCrackcn, 1986. Experimental analysis of the direct and indirect effects of an omnivorous filter-feeding clupeid on plankton community structure. Can. J. Fish, aquat. Sci. 43: 1935–1945.

    Article  Google Scholar 

  • Edmondson, W. T, 1977. Population dynamics and secondary production. Arch. Hydrobiol. Beih. Ergebn. Limnol. 8: 56–65.

    Google Scholar 

  • Gilbert, J. J., 1985. Competition between rotifers and Daphnia. Ecology 66: 1943–1950.

    Article  Google Scholar 

  • Hart, R. C., 1987. Population dynamics and production of five crustacean zooplankton in a subtropical reservoir during years of contrasting turbidity. Freshwat. Biol. 18: 287–318.

    Article  Google Scholar 

  • Hart, R. C., 1990. Zooplankton distribution in relation to turbidity and related environmental gradients in a large subtropical reservoir: patterns and implications. Freshwat. Biol. 24: 241–263.

    Article  Google Scholar 

  • Hayward, R. S. & M. J. Van Den Avyle, 1986. The nature of zooplankton spatial heterogeneity a non-riverine impoundment. Hydrobiologia 131:261–271.

    Article  Google Scholar 

  • Herzig, A., 1983. Comparative studies on the relationship between temperature and duration of embryonic development of rotifers. Hydrobiologia 104: 237–246.

    Article  Google Scholar 

  • Kirk, K. L. & J. J. Gilbert., 1990. Suspended clay and the population dynamics of planktonic rotifers and cladocerans. Ecology 71: 1741–1755.

    Article  Google Scholar 

  • Kissick, L. A., 1987. Prey selectivity and feeding periodicity of larval logperch in Acton Lake, Ohio. Envir. Biol. Fishes 20: 155–160.

    Article  Google Scholar 

  • Lewis W. M. Jr., 1978. Comparison of temporal and spatial variation in the zooplankton of a lake by means of variance components. Ecology 59: 666–671.

    Article  Google Scholar 

  • McCabe, G. D. & W. J. O’Brien, 1983. The effects of suspended silt on feeding and reproduction of Daphnia pulex. Am. Midl. Nat. 110:324–337.

    Article  Google Scholar 

  • Miner, J. G. & R. A. Stein, 1993. Interactive influence of turbidity and light on larval bluegill (Lepomis macrochirus) foraging. Can. J. Fish, aquat. Sci. 50: 781–788.

    Article  Google Scholar 

  • Pollard, A. I., 1996. Effects of turbidity and selective predation by larval gizzard shad on a reservoir zooplankton community. Master’s Thesis, Wright State University, Dayton, OH.

    Google Scholar 

  • Prepas, E., 1978. Sugar-frosted Daphnia: an improved fixation technique for Cladocera. Limnol. Oceanogr. 23: 557–559.

    Article  Google Scholar 

  • Sale, P. F, 1984. The structure of communities of fish on coral reefs and the merit of a hypothesis-testing approach to ecology. In Strong, D. R. Jr., D. Simberloff, L. G. Abele & A. B. Thistle (eds), Ecological Communities: Conceptual Issues and the Evidence. Princeton University Press, Princeton, NJ: 478–490.

    Google Scholar 

  • Schaus, M. H., M. J. Vanni, T. E. Wissing, M. T. Bremigan, J. A. Garvey & R. A. Stein, 1997. Nitrogen and Phosphorus excretion by a detritivorous fish (the gizzard shad, Dorosoma cepedianum) in a reservoir ecosystem. Limnol. Oceanogr. 42: 1386–1397.

    Article  CAS  Google Scholar 

  • Stemberger, R. S. 1979. A Guide to Rotifers of the Laurentian Great Lakes. EPA-600/4-79-021. U.S. Environmental Protection Agency, OH.

    Google Scholar 

  • Thornton, K. W., B. L. Kimmel & F. E. Payne, 1990. Reservoir Limnology: Ecological Perspectives. Wiley and Sons, New York.

    Google Scholar 

  • Threlkeld, S. T., 1982. Water renewal effects on reservoir zooplankton communities. Can. Wat. Res. J. 7: 151–167.

    Article  Google Scholar 

  • Threlkeld, S.T., 1983. Spatial and temporal variation in the summer zooplankton community of a riverine reservoir. Hydrobiologia 107: 249–254.

    Article  Google Scholar 

  • Urabe, J., 1989. Relative importance of temporal and spatial heterogeneity in the zooplankton community of an artificial reservoir. Hydrobiologia 184: 1–6.

    Article  Google Scholar 

  • Vrabe, J., 1990. Stable horizontal variation in the zooplankton community structure of a reservoir maintained by predation and competition. Limnol. Oceanogr. 35: 1703–1717.

    Article  Google Scholar 

  • Vinyard, G. L. & W. J. O’Brien, 1976. Effects of light and turbidity on the reactive distance of Bluegill (Lepomis macrochirus). J. Fish. Res. Board Can. 33: 2845–2849.

    Article  Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 1991. Limnological Analyses, 2nd edition. Springer-Verlag, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

E. Wurdak R. Wallace H. Segers

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Pollard, A.I., González, M.J., Vanni, M.J., Headworth, J.L. (1998). Effects of turbidity and biotic factors on the rotifer community in an Ohio reservoir. In: Wurdak, E., Wallace, R., Segers, H. (eds) Rotifera VIII: A Comparative Approach. Developments in Hydrobiology, vol 134. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4782-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4782-8_28

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6009-7

  • Online ISBN: 978-94-011-4782-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics