Skip to main content

Review paper: Rotifer responses to increased acidity: long-term patterns during the experimental manipulation of Little Rock Lake

  • Conference paper
Rotifera VIII: A Comparative Approach

Part of the book series: Developments in Hydrobiology ((DIHY,volume 134))

  • 350 Accesses

Abstract

Little Rock Lake, Wisconsin, U.S.A. has been the site of a whole-ecosystem experiment since 1983. It was divided into a treatment basin that was acidified in three, two-year stages and a reference basin. The rotifer community in the treatment basin exhibited a variety of responses to the manipulation. Many species decreased in abundance under reduced pH conditions but other rotifers increased at the same time such that there were ultimately increases with acidification in total rotifer biomass, and quite conspicuously, in the proportion that rotifers comprised of total zooplankton biomass. Ten rotifer species decreased at some stage during the acidification (e.g., Kellicottia longispina, Asplanchna priodonta and Keratella cochlearis) while four species increased dramatically (e.g., Synchaeta sp. and Keratella taurocephala). Similarity indices and total rotifer biomass differences measured between the two basins exhibited very different temporal patterns of response to acidification. Similarity decreased regularly beginning with the earliest stages of acid additions while biomass was nearly the same between the basins until the late stages of the experiment. Comparisons with other nearby lakes indicate, however, that acid conditions are not the only factors generating among-lake differences in rotifer community characteristics. Changes observed with acidification in Little Rock Lake were such that its total rotifer biomass grew more similar to that in a nearby acidic-bog lake and different from that in a near-neutral-pH lake. At the same time, abundance patterns for individual rotifer species in Little Rock Lake were not particularly similar to those in the other lakes. It appears that, although they are important, acid conditions alone can not account for all observed rotifer community differences among lakes. Higher proportions of rotifer biomass and high populations of K. taurocephala do seem to be common features of many low pH habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker, J. P. & S. W. Christensen, 1991. Effects of acidification on biological communities in aquatic ecosystems. In D. F. Charles (ed.), Acidic Deposition and Aquatic Ecosystems: Regional Case Studies, pp 83–106. Springer-Verlag, New York, 747 pp.

    Chapter  Google Scholar 

  • Brett, M. T., 1989. The rotifer communities of acid-stressed lakes of Maine. Hydrobiologia 186/187: 181–189.

    Article  Google Scholar 

  • Brezonik, P. L., J. G. Eaton, T. M. Frost, P. J. Garrison, T. K. Kratz, C. E. Mach, J. H. McCormick, J. A. Perry, W. A. Rose, C. J. Sampson, B. C. L. Shelley, W. A. Swenson, & K.E. Webster, 1993. Experimental acidification of Little Rock Lake, Wisconsin: Chemical and biological changes over the pH range 6.1 to 4.7. Can. J. Fish, aquat. Sci. 50: 1101–1121.

    Article  CAS  Google Scholar 

  • Carpenter, S. R., T. M. Frost, D. Heisey & T. K. Kratz, 1989. Randomized intervention analysis and the interpretation of whole-ecosystem experiments. Ecology 70: 1142–1152.

    Article  Google Scholar 

  • Charles, D. F. (ed.), 1991. Acidic Deposition and Aquatic Ecosystems: Regional Case Studies. Springer-Verlag, New York, 747 pp.

    Google Scholar 

  • Downing, J. A. & F. H. Rigler, 1984. A manual on methods for the assessment of secondary productivity in freshwaters. Blackwell, Oxford, England.

    Google Scholar 

  • Fischer, J. M. & T. M. Frost, 1997. Indirect effects of lake acidification on Chaoborus population dynamics: the role of food limitation and predation. Can. J. Fish, aquat. Sci. 54: 637–646.

    Article  Google Scholar 

  • Frost, T. M. & P. K. Montz, 1988. Early zooplankton response to experimental acidification in Little Rock Lake, Wisconsin, USA. Verh. int. Ver. Limnol. 23: 2279–2285.

    CAS  Google Scholar 

  • Frost, T. M., S. R. Carpenter, A. R. Ives & T. K. Kratz, 1995. Species compensation and complementarity in ecosystem function. In C. G. Jones & J. H. Lawton (eds), Linking Species and Ecosystems. Chapman and Hall, New York: 224–239.

    Chapter  Google Scholar 

  • Frost, T. M., P. K. Montz & T. K. Kratz. Zooplankton community responses during recovery from acidification: limited persistence by acid-favored species in Little Rock Lake, Wisconsin. Restoration Ecology. (In press).

    Google Scholar 

  • Galloway, J. N., G. E. Likens, & M. E. Hawley, 1984. Acid precipitation: natural versus anthropogenic components. Science 226: 829–831.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, M. J., 1992. Effects of experimental acidification on zooplankton populations: A multiple-scale approach. Ph.D. Dissertation, Oceanography and Limnology Graduate Program, University of Wisconsin, Madison, WI.

    Google Scholar 

  • Gonzalez, M. J. & T. M. Frost, 1994. Comparisons of laboratory bioassays and a whole-lake experiment: Rotifer responses to experimental acidification. Ecol. Appl. 4: 69–80.

    Article  Google Scholar 

  • Locke, A., 1992. Factors influencing community structure along stress gradients: zooplankton responses to acidification. Ecology 73: 903–909.

    Article  Google Scholar 

  • MacIssac, H. J., T. C. Hutchinson & W. Keller, 1987. Analysis of plankton rotifer assemblages from Sudbury, Ontarioa, area lakes of varying chemical composition. Can. J. Fish, aquat. Sci. 44: 1692–1701.

    Article  Google Scholar 

  • Magnuson, J. J., C. J. Bowser & T. K. Kratz, 1984. Long-term ecological research on north temperate lakes (LTER). Verh. int. Ver. Limnol. 22: 533–535.

    Google Scholar 

  • Rasmussen, P. W., D. M. Heisey, E. V Nordheim & T. M. Frost, 1993. Time-series intervention analysis: Unreplicated large-scale experiments. In: S. M. Scheiner & J. Gurevitch (eds), Design and Analysis of Ecological Experiments. Chapman and Hall, Inc., New York: 138–158.

    Google Scholar 

  • Ruttner-Kolisko, A., 1974. Plankton rotifers, biology and taxonomy. Die Binnengewässer 26(1) Supplement: 146 pp. E. Schweizerbart’sche Verlagsbuchandlung, Stuttgart, Germany.

    Google Scholar 

  • Sampson, C. L., P. L. Brezonik, T. M. Frost, K. E. Webster & T. D. Simonson, 1995. Experimental Acidification of Little Rock Lake, Wisconsin: The First Four Years of Chemical and Biological Recovery. Wat. Air Soil Pollut. 85: 1713–1719.

    Article  CAS  Google Scholar 

  • Schindler, D. W., 1988. Effects of acid rain on freshwater ecosystems. Science 239: 149–157.

    Article  PubMed  CAS  Google Scholar 

  • Schindler, D. W., T. M. Frost, K. H. Mills, P. S. S. Chang, I. J. Davies, L. Findlay, D. F. Malley, J. A. Shearer, M. A. Turner, P. J. Garrison, C. J. Watras, K. E. Webster, J. M. Gunn, P. L. Brezonik & W. A. Swenson, 1991. Comparisons between experimentally-and atmospherically-acidified lakes during stress and recovery. Proc. Soc. Edinb. 97B: 193–226.

    Google Scholar 

  • Siegfried, C. A., J. A. Bloomfield & J. W. Sutherland, 1989. Planktonic rotifer community structure in Adirondack, New York, U.S.A. lakes in relation to acidity, trophic status and related water quality characteristics. Hydrobiologia 175: 33–48.

    Article  CAS  Google Scholar 

  • Stemberger, R. S. 1979. A guide to the rotifers of the Laurentian Great Lakes. US EPA 600/4-79-021, 185 pp.

    Google Scholar 

  • Stewart-Oaten, A., J. R. Bence & C. W. Osenberg, 1992. Assessing effects of unreplicated perturbations: no simple solutions. Ecology 73: 1396–1404.

    Article  Google Scholar 

  • Watras, C. J. & T. M. Frost, 1989. Little Rock Lake: Perspectives on an experimental approach to acidification. Arch, envir. Contam. Toxicol. 18: 157–165.

    Article  Google Scholar 

  • Webster, K. E., T. M. Frost, C. J. Watras, W. A. Swenson, M. Gonzalez & P. J. Garrison, 1992. Complex biological responses to the experimental acidification of Little Rock Lake, Wisconsin, USA. Envir. Pollut. 78: 73–78.

    Article  CAS  Google Scholar 

  • Yan, N. D., W. Keller, K. M. Somers, T. W. Pawson, & R. E. Girard, 1996. Recovery of crustacean zooplankton communities from acid and metal contamination: comparing manipulated and reference lakes. Can. J. Fish, aquat. Sci. 53: 1301–1327.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

E. Wurdak R. Wallace H. Segers

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Frost, T.M., Montz, P.K., Gonzalez, M.J., Sanderson, B.L., Arnott, S.E. (1998). Review paper: Rotifer responses to increased acidity: long-term patterns during the experimental manipulation of Little Rock Lake. In: Wurdak, E., Wallace, R., Segers, H. (eds) Rotifera VIII: A Comparative Approach. Developments in Hydrobiology, vol 134. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4782-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4782-8_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6009-7

  • Online ISBN: 978-94-011-4782-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics