Skip to main content

Transformation of Somatic Embryos of Fruit Trees and Grapevine

  • Chapter
Somatic Embryogenesis in Woody Plants

Part of the book series: Forestry Sciences ((FOSC,volume 59))

Abstract

The major objectives of most fruit improvement programmes include breeding for desirable growth habit, resistance to biotic and abiotic stress factors, and high quality and extended shelf life of fruits. Incorporation of genes that govern these economic attributes in the popular fruit cultivars is difficult through conventional breeding and takes years to achieve. Therefore, improvement of elite fruit cultivars through direct gene transfer without gross shuffling of the genome is an economically viable strategy to improve fruit trees and vines within a relatively short period. Genes from any organism can now be transferred and expressed in fruit crops, but the efficiency of transformation, integration and expression of foreign genes and regeneration of transgenic plants from transformed cells are still unpredictable (Owens, 1995; Birch, 1997). Both transformation and regeneration are less efficient in fruit trees and vines than in many herbaceous crops (Scorza, 1991; Schuerman and Dandekar, 1993). Agrobacterium and the biolistic gun are two methods used to transform plant cells. Agrobacterium-mediated transformation has been successfully used in apple, pear, citrus and mango, while the biolistic gun is preferred for papaya. Both Agrobacterium and biolistic gun are used for grape transformation. Adventitious shoot morphogenesis and somatic embryogenesis are the two pathways of plant regeneration in cultured plant cells. Transgenic plants of apples and pears are regenerated by transforming adventitious shoots in leaf cultures (Schuerman and Dandekar, 1993; Mourgues et al., 1996; Scorza et al., 1998), whereas transgenic grapes, mangoes and papayas are produced from transformed somatic embryos (see reviews by Gray, 1995; Litz et al., 1995; Oliviera et al., 1996; Srinivasan and Scorza, 1997). Transgenic citrus plants are produced from adventitious shoots of internode sections of seedlings (Moore et al., 1992; Cervera et al., 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alleweldt, G. and J.V. Possingham. 1988. Progress in grape breeding. Theor Appl Genet. 75: 669–673.

    Article  Google Scholar 

  • Birch, R.G. 1997. Plant transformation: Problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol. 48: 297–326.

    Article  PubMed  CAS  Google Scholar 

  • Busam, G., H.H Kassemeyer, and U. Matern]. 1997. Differential expression of chitinase in Vitis vinifera L. responding to systemic acquired resistance activators or fungal challenge. Plant Physiol. 115: 1029–

    Article  PubMed  CAS  Google Scholar 

  • Cabrera-Ponce, J.L., A. Vegas-Garcia and L. Herrera-Estrella. 1995. Herbicide resistant transgenic papaya plats produced by an efficient particle bombardment transformant method. Plant Cell Rep. 15: 1–7.

    Article  CAS  Google Scholar 

  • Cabrera-Ponce, J.L., A. Vegas-Garcia and H. Herrera-Estrella. 1996. Regeneration of transgenic papaya plants via somatic embryogenesis induced by Agrobacterium rhizogenes, In Vitro Cell Dev Biol Plant. 32: 86–90.

    Article  Google Scholar 

  • Cervera, M., J. Juarez, A. Navarro, J.A. Pina, N. Duran-Vila, L. Navarro and L. Pena]. 1998. Genetic transformation and regeneration of mature tissue of woody fruit plants bypassing the juvenile stage, Transgenic Res. 7: 51–59

    Article  CAS  Google Scholar 

  • Cheng, Y-H., J-S. Yang and S-D. Yeh. 1996. Efficient transformation of papaya by coat protein gene of papaya ringspot virus mediated by Agrobacterium following liquid-phase wounding by embryogenic tissues with caborundum. Plant Cell Rep. 16: 127–132.

    Article  CAS  Google Scholar 

  • Colby, S.M. and C.P. Meredith. 1990. Kanamycin sensitivity of cultured tissues of Vitis Plant Cell Rep. 9: 237–240.

    Article  CAS  Google Scholar 

  • Colby, S.M., A.M. Juncosa and C.P. Meredith]. 1991. Cellular difference in Agrobacterium susceptibility and regenerative capacity restrict the development of transgenic grapevines. J Am Soc Hort Sci. 116: 356–361

    Google Scholar 

  • Cruz-Hernadez, A., M.A. Gomez-Lim and R.E. Litz. 1997. Transformation of mango somatic embryos. Acta Hort. 455: 292–298.

    Google Scholar 

  • Emershad, R.L. and D.W. Ramming. 1994. Somatic embryogenesis and plant development from immature zygotic embryos of seedless grapes (Vitis vinifera. L). Plant Cell Rep. 14: 6–12.

    Article  CAS  Google Scholar 

  • Firoozabady, I., Y. Moy, P. Oeller and N. Gutterson. 1998. Improvement of transformation and regeneration in papaya. In Vitro Cell Dev Biol Plant. 34: 47A.

    Google Scholar 

  • Fitch, M.M., R.M. Manshardt, D. Gonsalves, J.L. Slightom and J.C. Sanford. 1990. Stable transformation of papaya via microprojectile bombardment. Plant Cell Rep. 9: 189–194.

    CAS  Google Scholar 

  • Fitch, M.M., R.M. Manshardt, D. Gonsalves, J.L Slightom and J.C. Sanford. 1992. Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of papaya ringspot virus. Biotechnology. 10: 1466–1472.

    Article  CAS  Google Scholar 

  • Fitch, M.M.M., R.M. Manshardt, D. Gonsalves and J.L. Slightom. 1993. Transgenic papaya plants from Agrobacterium-mediated transformation of somatic embryos. Plant Cell Rep. 12: 245–249.

    Article  CAS  Google Scholar 

  • Fitch, M., P. Moore, T. Leong and D. Gonsalves. 1998. Transgenic papaya to the field: new cultivars and new propagation methods, In Vitro Cell Dev Biol Plant. 34: 47A.

    Google Scholar 

  • Garin, E., E. Grenier, G. Grenier and G. De March. 1997. Somatic embryogenesis in wild cherry (Prunus avium), Plant Cell Tiss Org Cult. 48: 83–91.

    Article  CAS  Google Scholar 

  • Gmitter, F. G., J. W. Grosser and G. A. Moore. 1992. Citrus. In: Biotechnology of Perennial fruit Trees. pp. 335–369. (eds. F.A. Hammerschlag and R.E. Litz). Cambridge: CAB International.

    Google Scholar 

  • Gomez-Lim, M.A. 1997. Gene isolation in mango fruit. Acta Hort. 455: 287–291.

    CAS  Google Scholar 

  • Gosal, S.S., M.I.S. Gill and H.S. Grewal]. 1995. P. Gupta and R. Newton). Dordrecht: Kluwer Academic Publishe

    Chapter  Google Scholar 

  • Golles, R., R. Moser, H. Katinger, M. Laimer da Camara Machado, V. Tsolova, A. da Camara Machado and A. Bouquet. 1997. Transformation of somatic embryo of Vitis sp. with different constructs containing nucleotide sequences from nepovirus protein genes. Acta Hort. 447: 265–272.

    CAS  Google Scholar 

  • Gray, D.J. 1995. Somatic embryogenesis. In: Somatic Embryogenesis in Woody Plants. Vol. 2. pp. 191–217. (eds. S. Jain, P. Gupta and R. Newton). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Gutierrez-Pesce, P., K. Taylor, R. Muleo, and E. Rugini. 1998. Somatic embryogenesis and shoot regeneration from transgenic roots of the cherry rootstock Colt (Prunus avium × P. pseudocerasus) mediated by pRi 1855 T-DNA of Agrobacterium rhizogenes. Plant Cell Rep. 17: 574–580.

    Article  CAS  Google Scholar 

  • Gray, D.J. and C.P. Meredith. 1992. Grapes. In: Biotechnology of Perennial fruit Trees. pp 229–262, (eds. F.A. Hammerschlag and R.E. Litz). Cambridge: CAB International.

    Google Scholar 

  • Hammerschlag, F.A. and A.C. Smigocki. 1998. Growth and in vitro propagation of peach plants transformed with the snooty mutant strain of Agrobacterium tumefaciens. HotScience. 33: 897–899.

    Google Scholar 

  • Hammerschlag, F.A., I.J. McCanna and A.C. Smigocki. 1997. Characterization of transgenic peach plants containing a cytokinin biosynthesis gene. Acta Hort. 447: 569–574.

    CAS  Google Scholar 

  • Hebert, D., J.R. Kikkert, F.D. Smith and B.I. Reisch]. 1993. Optimization of biolistic transformation of embryogenic grape cell suspensions. Plant Cell Rep. 12: 585–589

    Article  CAS  Google Scholar 

  • Hidaka, T., M. Omura, M. Ugaki, M. Tomiyama, A. Kato, M. Ohshima and F. Motoyashi. 1990. Agrobacterium-mediated transformation and regeneration Citrus spp from suspension cells. Jap Jour Breeding. 40: 199–208

    Google Scholar 

  • Hidaka, T. and M. Omura. 1993. Transformation of citrus protoplasts by electroporation. J Jap Soc Hort Sci. 62: 371–376.

    Article  CAS  Google Scholar 

  • Jaynes, J. 1993. Use of genes encoding novel lytic peptides and proteins that enhance microbial disease resistance in plants. Acta Hort. 336: 33–39.

    Google Scholar 

  • Kaneyoshi, J., S. Kobayashi, Y. Nakamura, N. Shigemoto and Y. Doi. 1994. A simple and efficient gene transfer system of trifoliate orange (Poncirus trifoliata Raf). Plant Cell Rep. 13: 541–545.

    CAS  Google Scholar 

  • Kikkert, J.R., D. Hebert-Soule, P.G. Wallace, M.J. Striem, and B.I. Reisch. 1996. Transgenic plantlets of ‘Chancellor’ grapevine (Vitis sp.) from biolistic transformation of embryogenic cell suspensions. Plant Cell Rep. 15: 311–316.

    Article  CAS  Google Scholar 

  • Kikkert, J.R., G.S. Ali, M.J. Striem, M-H. Martens, P.G. Wallace, L. Molina and B. I. Reisch. 1997. Genetic engineering of grapevine (Vitis sp.) for enhancement of disease resistance. Acta Hort. 447: 273–279.

    Google Scholar 

  • Kobayashi, S. and H. Uchimaya. 1989. Expression and integration of foreign gene in orange (Citrus sinensis Osb) protoplasts by direct DNA transfer. J Jap Genet. 64: 91–98.

    Article  Google Scholar 

  • Kobayashi, S., A. Sakai, T. Ohgawara, and Y Nakamura. 1994. Stable maintenance of an integrated gene in nucellar cells of naval orange (Citrus sinensis Osb) under storage in liquid N. J Jap Soc Hort Sci. 63: 553–558.

    Article  Google Scholar 

  • Krastanova, S., M. Perrin, P. Brbier, G. Demangeat, P. Cornuet, N. Bardonnet, L. Otten, L. Pinck and L. Walker. 1995. Transformation of grapevine rootstocks with the coat protein gene of grapevine fanleaf nepovirus. Plant Cell Rep. 14: 550–554.

    Article  CAS  Google Scholar 

  • Le Gall, O., L. Torregrosa, Y Danglot, T. Candresse and A. Bouquet. 1994. Agrobacterium-mediated genetic transformation of grapevine somatic embryos and regeneration of transgenic plants expressing the coat protein of grape chrome mosaic nepovirus (GCMV). Plant Sci. 102: 161–170.

    Article  Google Scholar 

  • Litz, R.E. and R. Conover. 1980. Somatic embryogenesis in cell cultures of Carica stipulata. HortScience. 15: 733–735.

    Google Scholar 

  • Litz, R.E., P.M. Moon, H. Mathews, S. Jayasankar, M.J.M. Manslaud and F. Pliego-Alfaro. 1995. Somatic embryogenesis in mango (Mangifera indica L). In: Somatic Embryogenesis in Woody Plants. Vol. 2. pp. 341–356. (eds. S. Jain, P. Gupta and R. Newton). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Lycett, G.W., Z. bin Zainal, M. Los, C.L. Findlay and G.A. Tucker. 1997. Novel ripening-specific cDNA from mango fruit. Acta Hort. 455: 277–285.

    CAS  Google Scholar 

  • Machado, A.C., M. Puschmann, H. Puhringer, R. Kremen, H. Katinger and M.L.C. Machado. 1995. Somatic embryogenesis of Prunus subhirtella autumno rosa and regeneration of transgenic plants after Agrobacterium-mediated transformation. Plant Cell Rep. 14: 335–340.

    Article  CAS  Google Scholar 

  • Manshardt, R.M. 1992. Papaya. In: Biotechnology of Perennial Fruit Crops. pp. 489–512. (eds F.A. Hammerschlag and R.E. Litz). Cambridge: CAB International.

    Google Scholar 

  • Martinelli, L. and G. Mandolino. 1994. Genetic transformation and regeneration of transgenic plants in grapevine (Vitis rupestris S.). Theor Appl Genet. 88: 621–628.

    Article  Google Scholar 

  • Mathews, H. and R.E. Litz. 1990. Kanamycin sensitivity of mango somatic embryos. HortScience. 25: 965–966.

    CAS  Google Scholar 

  • Mathews, H., R. E. Litz, H.D. Wilde, S.A. Merkle and H.Y. Wetzstein. 1992. Stable integration and expression of beta glucuronidase and NPT II genes in mango somatic embryos. In Vitro Cell Dev Biol Plant. 28: 172–178.

    Article  Google Scholar 

  • Mauro, M. C., S. Toutain, B. Walter, L. Pinck, L. Otten, P. Coutes-Thevenot, A. Deloire and P. Barbier. 1995. High efficiency regeneration of grapevine plants transformed with the GFLV coat protein gene. Plant Sci. 112: 97–106.

    Article  CAS  Google Scholar 

  • Moore, G.A., C. Jacona, J.L. Neidigh, S.D. Lawrence and K. Cline. 1992. Agrobacterium-mediated transformation of Citrus stem segments and regeneration of transgenic plants. Plant Cell Rep. 11: 238–242.

    Article  CAS  Google Scholar 

  • Mourgues, F., E. Chevreau, C. Lambert and A. deBondt. 1996. Efficient Agrobacterium-mediated transformation and recovery of transgenic plants from pear (Pyrus communis L.). Plant Cell Rep. 16: 245–249.

    CAS  Google Scholar 

  • Mullins, M.G. and C. Srinivasan. 1976. Somatic embryos and plantlets from an ancient clone of grapevine (cv. Cabernet Sauvignon) by apomixis in vitro. J Exp Bot. 27: 1022–1030.

    Article  Google Scholar 

  • Mullins, M.G., F.C.A. Tang and D. Facciotti. 1990. Agrobacterium-mediated genetic transformation of grapevines: Transgenic plants of Vitis rupestris Scheele and buds of Vitis vinifera L. Biotechnology. 8: 1041–1045.

    Article  CAS  Google Scholar 

  • Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol Plant. 15: 473–497.

    Article  CAS  Google Scholar 

  • Nakano, M., Y. Hoshino and M. Mii. 1994. Regeneration of transgenic plants of grapevine (Vitis vinifera L.) via Agrobacterium rhizogenes-mediated transformation of embryogenic calli. J Exp Bot. 45: 649–656.

    Article  CAS  Google Scholar 

  • Norelli, J.L. and H.S. Aldwinkcle. 1993. The role of aminoglycoside antibiotics in the regeneration of neomycin phosphotransferase-transgenic apple tissue. J Am Soc Hort Sci. 118: 311–316.

    CAS  Google Scholar 

  • Oliveira, M.M., C.M. Miguel and M.H. Raquel. 1996. Transformation studies in woody fruit species. Plant Tissue Cult Biotechnol. 2: 76–93.

    Google Scholar 

  • Owens, L.D. 1995. Overview of gene availability, identification and regulation. Hortscience. 30: 957–961.

    Google Scholar 

  • Park, S.H., B.M. Lee, C. Zapata, V. Choi and R.H. Smith. 1998. Evaluation of plasmid size and a supervirulent plasmid on rice shoot tip transformation. In Vitro Cell Dev Biol Plant. 34: 47A.

    Google Scholar 

  • Pena, L., M. Cervera, J. Juarez, A. Navarro, J.A. Pina, N. Duran-Vila, and L. Navarro. 1995a. Agrobacterium-mediated transformation of sweet orange and regeneration of transgenic plants. Plant Cell Rep. 14: 616–619.

    Article  CAS  Google Scholar 

  • Pena, L., M. Cervera, J. Juarez, C. Ortega, J.A. Pina., N. Duran-Vila and L. Navarro. 1995b. High efficiency Agrobacterium-mediated transformation and regeneration of citrus. Plant Sci. 104: 183–191.

    Article  CAS  Google Scholar 

  • Perl, A., O. Lotan, M. Abu-Abied and D. Holland. 1996. Establishment of an Agrobacterium-mediated transformation system for grape (Vitis vinifera L.): The role of antioxidants during grape Agrobacterium interactions. Nature Biotechnol. 14: 624–628.

    Article  CAS  Google Scholar 

  • Ploetz, R.C., D. Benscher, A. Vazquez, A. Colls, J. Nagel and B. Schaffer. 1997. Mango decline research in Florida on an apparently wide-spread disease complex. Acta Hort. 455: 547–557.

    Google Scholar 

  • Potrykus, I. 1992. Micro-targeting of microprojectile to target areas in the micrometer range. Nature. 355: 568–569.

    Article  Google Scholar 

  • Pu, X.A. and R.N. Goodman. 1992. Induction of necrosis by Agrobacterium tumefaciens on grape explants. Physiol Mol Plant Pathol. 41: 241–254.

    Article  CAS  Google Scholar 

  • Rajasekaran, K. and M.G. Mullins. 1979. Embryos and plantlets from cultured anthers of hybrid grapevine. J Exp Bot. 30: 399–407.

    Article  Google Scholar 

  • Raj Bhansali, R., J.A.A. Driver and D.J. Durzan. 1990. Rapid multiplication of adventitious somatic embryos in peach and nectarine by secondary embryogenesis. Plant Cell Rep. 9: 280–284.

    Google Scholar 

  • Ravelonandro, M., R. Scorza, J.C. Bachelier, G. Labonne, L.. Levy, V. Damsteegt, A. M. Callahan and J. Dunej. 1997. Resistance of transgenic Prunus domestica to plum pox virus infection. Plant Dis. 81: 1231–1235.

    Article  CAS  Google Scholar 

  • Robinson, S.P., A.K. Jacobs, and I.B. Dry. 1997. A class IV chitinase is highly expressed in grape berries during ripening. Plant Physiol. 114: 771–778.

    Article  PubMed  CAS  Google Scholar 

  • Sauco, V.G. 1997. World mango production. Acta Hort. 455: 15–22.

    Google Scholar 

  • Schuerman, P.L and A.M. Dandekar. 1993. Transformation of temperate woody crops: Progress and potentials. Sci Hort. 55: 101–124.

    Article  CAS  Google Scholar 

  • Scorza, R. 1991. Gene transfer for the genetic improvement of perennial fruit and nut crops. HortScience. 26: 1033–1035.

    Google Scholar 

  • Scorza, R. and F.A. Hammerschlag. 1992. Stone fruits. In: Biotechnology of Perennial Fruit Crops. pp. 277–301. (eds. F.A. Hammerschlag and R.E. Litz). Wallingford. CAB International.

    Google Scholar 

  • Scorza, R. and W. Sherman. 1996. Peaches. In: Fruit Breeding. 1. Trees and Tropical Fruits. pp. 325–440. (eds. J. Janick and J.N. Moore) New York: John Wiley & Sons Inc.

    Google Scholar 

  • Scorza, R., R. Bell and C. Srinivasan. 1998. Transformation of Bosc pear with the rol C gene from Agrobacterium rhizogenes. In Vitro Cell Dev Biol Plant. 34: 45A.

    Google Scholar 

  • Scorza, R., J.M. Cordts and S. Mante. 1990a. Long term somatic embryo production and plant regeneration from embryo derived peach callus. Acta Hort. 280: 183–190.

    Google Scholar 

  • Scorza, R., PH. Morgans, J.M. Cordts, S. Mante and A.M. Callahan. 1990b. Agrobacterium-medialed transformation of peach (Prunus persica L Batsch) leaf segments, immature embryos, and long-term embryogenic callus. In Vitro Cell Dev Biol. 26: 829–834.

    Article  CAS  Google Scholar 

  • Scorza, R., M. Ravelonandro, A.M. Callahan, J.M. Cordts, M. Fuchs, J. Dunez, and D. Gonsalves, 1994. Transgenic plums (Prunus domestica L.) express the plum pox virus coat protein gene. Plant Cell Rep. 14: 18–22.

    Article  CAS  Google Scholar 

  • Scorza, R., J.M. Cordts, D.W. Ramming and R.L. Emershad. 1995a. Transformation of grape (Vitis vinifera L.) zygotic-derived somatic embryos and regeneration of transgenic plants. Plant Cell Rep. 14: 589–592.

    Article  CAS  Google Scholar 

  • Scorza, R., F.A. Hammerschlag, T.W. Zimmerman and J.M. Cordts. 1995b. Genetic Transformation in Prunus persica (Peach) and Prunus domestica (Plum). Biotechnol Agric For. 34: 255–268.

    Google Scholar 

  • Scorza, R., J.M. Cordts, D.J. Gray, D. Gonsalves, R.L. Emershad and D.W. Ramming. 1996. Producing transgenic ‘Thompson Seedless’ grape (Vitis vinifera L.) plants. J Amer Soc Hort Sci. 121: 616–619.

    Google Scholar 

  • Smigocki, A.C. and F.A. Hammerschlag. 1991. Regeneration of plants from peach embryo cells infected with shooty mutant strain of Agrobacterium. J Am Soc Hort Sci. 116: 1092–1097.

    Google Scholar 

  • Srinivasan, C. and M.G. Mullins. 1980. High frequency somatic embryo production from unfertilized ovules of grapes. Sci Hort. 13: 245–252.

    Article  Google Scholar 

  • Srinivasan, C. and R. Scorza. 1997. Problems and prospects in the transformation of temperate crops. In: New Genetic Approaches to Crop Improvement Proc. 3rd International Symp. Tando Jam, Pakistan. (ed. K.A. Siddiqui) (in press).

    Google Scholar 

  • Vardi, A., S. Bleichman and D. Aviv. 1990. Genetic transformation of citrus protoplasts and regeneration of transgenic plants. Plant Sci. 69: 199–206.

    Article  CAS  Google Scholar 

  • Vilaplana, M. and M.G. Mullins. 1989. Regeneration of grapevines (Vitis spp) in vitro: Formation of adventitious buds on hypocotyl and cotyledons of somatic embryos. J Plant Physiol. 134: 413–419.

    Article  CAS  Google Scholar 

  • Wallin, A., M. Nyman and M. Svenson. 1995. Somatic embryogenesis in apple (Malus). In: Somatic Embryogenesis in Woody Plants. Vol. 2. pp 445–460. (eds. S. Jain, P. Gupta and R. Newton). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Yang, J-S., T-A. Yu, Y-H. Cheng and S-D. Yeh. 1996. Transgenic papaya plants from Agrobacterium-mediated transformation of petioles of in vitro propagated multishoots. Plant Cell Rep. 15: 459–464.

    Article  CAS  Google Scholar 

  • Yao, J.L., J.H. Wu, A.P. Gleave and B.A.M. Morris. 1996. Transformation of citrus embryogenic cells using particle bombardment and production of transgenic embryos. Plant Sci. 113: 175–183.

    Article  CAS  Google Scholar 

  • Ye, X., S.K. Brown, R. Scorza,, J.M. Cordts and J.C. Sanford. 1994. Genetic transformation of peach tissues by particles bombardment. J Am Soc Hort Sci. 119: 367–373.

    CAS  Google Scholar 

  • Zimmerman, T.W. and R. Scorza. 1996. Genetic transformation through the use of hyperhydric tobacco. Mol Breed. 20: 73–80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Srinivasan, C., Scorza, R. (1999). Transformation of Somatic Embryos of Fruit Trees and Grapevine. In: Jain, S.M., Gupta, P.K., Newton, R.J. (eds) Somatic Embryogenesis in Woody Plants. Forestry Sciences, vol 59. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4774-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4774-3_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6006-6

  • Online ISBN: 978-94-011-4774-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics