Skip to main content

Analysis of MHD Effects on Electrochemical Processes. Experimental and Theoretical Approach of the Interfacial Phenomena

  • Chapter

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 51))

Abstract

Magnetically induced effects on electrolytic currents have been studied for various electrochemical systems. For all investigated cases, significant modification was found to be strictly relevant to transport process and magnetic effects were proved to be MHD (i.e. MagnetoHydroDynamic) phenomena. This holds for a reversible system (ferri-ferrocyanide) as well as for non reversible systems such as the electrocrystallization of Zn, or Ni from a pure or adulterated Watts bath. Assuming that the well-known magnetic effects on electrolytic currents in the bulk of solutions keep valid in the close vicinity of the electrode, the MHD phenomena are explained by taking into account the space charge of the diffuse layer. Theoretical expressions which depend on bulk composition and hydrodynamic conditions can thus be obtained. A comparison with experimental results under stationary or dynamic conditions was undertaken. For the latter case, two methods were employed : either classical electrochemical impedance spectroscopy (EIS) or MHD transfer function analysis. For both cases, a good agreement was found between expected physical values and calculated ones. Moreover, new results on electrocrystallization of Ni and Zn have been found.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. FAHIDY, T.Z. (1983) Magnetoelectrolysis, J. Appl. Electrochem., 13, 553.

    Article  CAS  Google Scholar 

  2. TACKEN, R.A. and JANSSEN, L.J.J. (1995) Applications of magneto-electrolysis, J. Appl. Electrochem., 25, 1.

    Article  CAS  Google Scholar 

  3. LEE, J., RAGSDALE, S.R., GAO, X., and WHITE, H.S. (1997) Magnetic field control of the potential distribution and current at microdisk electrodes, J. Electroanal. Chem., 422, 169.

    Article  CAS  Google Scholar 

  4. DEVOS, O., OLIVIER, A., CHOPART, J.-P., AABOUBI, O., and MAURIN, G. (1998) Magnetic field effects on nickel electrodeposition, J. Electrochem. Soc, 145, 401.

    Article  CAS  Google Scholar 

  5. TRONEL-PEYROZ, E. and OLIVIER, A. (1982) Applications of the Boltzmann equation to the study of electrolytic solution in the presence of electric and magnetic fields, Phys. Chem. Hydrodyn., 3, 251.

    CAS  Google Scholar 

  6. OLIVIER, A. (1979) Contribution à l’étude des effets magnéto-électriques en solution aqueuse, Thesis, Reims, France.

    Google Scholar 

  7. TRONEL-PEYROZ, E. (1978) Etude des effets de température galvanomagnétiques transverses dans les solutions aqueuses électrolytiques, Thesis, Reims, France.

    Google Scholar 

  8. BARD, A.J. and FAULKNER, L.R. Electrochimie. Principes, méthodes et applications, Masson, Paris, 1983.

    Google Scholar 

  9. LEVICH, V.G., Physicochemical hydrodynamics, Prentice-Hall Inc, Englewood Cliffs, N.J., (1962).

    Google Scholar 

  10. AOGAKI, R., FUEKI, K., and MUKAIBO, T. (1975) Application of magnetohydrodynamic effect to the analysis of electrochemical reactions-2. diffusion process in MHD forced flow of electrolyte solutions, Denki Kagaku, 43, 509.

    CAS  Google Scholar 

  11. AOGAKI, R., FUEKI, K., and MUKAIBO, T. (1976) Diffusion process in viscous flow of electrolyte solution in magnetohydrodynamic pump electrodes, Denki Kagaku, 44, 89.

    CAS  Google Scholar 

  12. NGOBOUM, G., ALEMANY, A., OLIVAS, P., and BARK, F.H. (1997) Mass transfer in electrochemical processes, 3rd International Conference on Transfer Phenomena in MHD and Electroconducting Flows, Abstract p. 185, Aussois, France 22–26 Sept.

    Google Scholar 

  13. OLIVIER, A., CHOPART, J.-P., DOUGLADE, J., and GABRIELLI, C. (1987) Investigation of magnetic effects on mass-transport at the electrode: electrolyte interface by impedance technique, J. Electroanal Chem., 227, 275.

    Article  CAS  Google Scholar 

  14. AABOUBI, O., CHOPART, J.-P., DOUGLADE, J., OLIVIER, A., GABRIELLI, C., and TRIBOLLET, B. (1990) Magnetic field effect on mass transport, J. Electrochem. Soc., 137, 1796.

    Article  CAS  Google Scholar 

  15. AABOUBI, O. (1991) Etude de l’influence du champ magnétique sur les phénomènes de transport de masse en électrochimie: impédance magnétohydrodynamique, Thesis, Reims, France.

    Google Scholar 

  16. DEVOS, O., AABOUBI, O., CHOPART, J.-P., MERIENNE, E., OLIVIER, A., GABRIELLI, C., and TRIBOLLET, B. (1997) A new experimental device for magnetoelectrochemical (M.E.C.) transfer function measurements, Polish J. Chem., 71, 1160.

    CAS  Google Scholar 

  17. DEVOS, O. (1997) Contribution à l’étude de l’électrodéposition métallique sous champ magnétique: analyses stationnaires et dynamiques, Thesis, Reims, France.

    Google Scholar 

  18. DEVOS, O., AABOUBI, O., CHOPART, J.-P., GABRIELLI, C., MERIENNE, E., OLIVIER, A., and TRIBOLLET, B. (1997) Magnetic field effect on the zinc electrodeposition, The 1997 joint International Meeting, Abstract 445, Paris, France 31 Aug.–5 Sept.

    Google Scholar 

  19. WIART, R. (1968) Contribution à l’étude cinétique de l’électrocristallisation du nickel. Influence de quelques inhibiteurs organiques, Oberfläche-Surface, 9, 213, 241, 275.

    CAS  Google Scholar 

  20. AMBLARD, J., EPELBOIN, I., FROMENT, M., and MAURIN, G. (1979) Inhibition and nickel electrocrystallization, J. Applied Electrochem., 9, 233.

    Article  CAS  Google Scholar 

  21. DORSCH, R.K. (1969) J. Electroanal Chem., 21, 495.

    Article  CAS  Google Scholar 

  22. CHOPART, J.-P., DOUGLADE, J., FRICOTEAUX, P., and OLIVIER, A. (1991) Electrodeposition and electrodissolution of copper with a magnetic field: dynamic and stationary investigations, Electrochim. Acta, 36, 459.

    Article  CAS  Google Scholar 

  23. FRICOTEAUX, P., OLIVIER, A., and DELMAS, R. (1992), Study of the exchange current at the Cu2+-Cu interface by radiotracer: magnetic field effect, J. Electrochem. Soc., 139, 1096.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chopart, JP., Devos, O., Aaboubi, O., Merienne, E., Olivier, A. (1999). Analysis of MHD Effects on Electrochemical Processes. Experimental and Theoretical Approach of the Interfacial Phenomena. In: Alemany, A., Marty, P., Thibault, J.P. (eds) Transfer Phenomena in Magnetohydrodynamic and Electroconducting Flows. Fluid Mechanics and Its Applications, vol 51. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4764-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4764-4_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6002-8

  • Online ISBN: 978-94-011-4764-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics