Skip to main content

Raman and Infrared Spectroscopy

  • Chapter
Carbyne and Carbynoid Structures

Part of the book series: Physics and Chemistry of Materials with Low-Dimensional Structures ((PCMALS,volume 21))

Abstract

Raman and IR spectra of carbyne-like materials show a characteristic band at 2000–2300 cm−1 which was assigned to the CC stretching mode of sp-bonded carbon chain. From the Raman and IR spectra, the purity of carbynoid materials can be deduced. The length of an unperturbed sp-carbon chain (conjugation length) can be evaluated from the band position and dispersion effects. The most detailed spectroscopic data exist for carbyne-like materials prepared by chemical or electrochemical methods from perhalo-n-alkanes, either polymers or low-molecular weight precursors. Raman and IR spectra of carbynoid products are sensitive towards elevated temperatures and/or reactive environment (air oxygen, humidity). Crosslinking of carbynoid chains can be monitored by time-dependencies of both the intensity and position of the CC stretching mode. By resonance Raman scattering the first allowed electronic transition can be identified. Anisotropy, introduced by preferential orientation of carbynoid chains, can be followed by polarized Raman measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4. References

  1. Zawadzki, J.: Infrared spectroscopy in surface chemistry of carbons, in Thrower, P.A. (ed.), Chemistry and Physics of Carbon, Vol.21, M.Dekker, New York, (1989), p. 147–380.

    Google Scholar 

  2. Knight, D.S. and White, W.B.: Characterization of diamond films by Raman spectroscopy, J. Mater. Res. 4 (1989), 385–393.

    Article  CAS  Google Scholar 

  3. Kuzmany, H.: Resonance Raman spectroscopy of conjugated polymers. What can we learn? Makromol. Chem. Macromol. Symp. 37 (1990), 81–97.

    Article  CAS  Google Scholar 

  4. Kastner, J., Winter, J. and Kuzmany, H.: Raman spectroscopy of conjugated carbon systems: polymers and fullerenes, Conjugated Double Bond Systems: Polymers, Fullerene and Graphite, Materials Science Forum, Warsaw, (1995), p. 161–170.

    Google Scholar 

  5. Zerbi, G.: New perspectives of vibrational spectra in materials science, in Mackenzie, M.W. (ed.), Advances in Applied Fourier Transform Infrared Spectroscopy, J. Wiley, New York, (1988), p. 247–322.

    Google Scholar 

  6. Kastner, J., Pichler, J., Kuzmany, H., Curran, S., Blau, W., Weldon, D.N., Delamesiere, M., Draper, S. and Zandbergen, H.: Resonance Raman and infrared spectroscopy of carbon nanotubes, Chem. Phys. Lett. 221 (1994), 53–58.

    Article  CAS  Google Scholar 

  7. Kuzmany, H., Matus, M., Pichler, J. and Winter, J.: Vibrational spectroscopy of fullerenes and fullendes, NATO ASI-CSeries 82 (1993), 274–295.

    Google Scholar 

  8. Rice, M.J., Phillpot, S.R., Bishop, A.R. and Campbell, D.K.: Solitons, polarons, and phonons in the infinite polyyne chain, Phys. Rev. B 34 (1986), 4139–4149.

    Article  CAS  Google Scholar 

  9. Korshak, V.V., Kudryavtsev, Y.P., Evsyukov, S.E., Korshak, Y.V., Guseva, M.B., Babaev, V.G. and Kostishko, B.M.: IR spectra of carbyne, Dokl. Akad. Nauk SSSR 298 (1988), 1421–1424. (Dokl. Phys. Chem. 1988, 298, 199).

    CAS  Google Scholar 

  10. Kurti, J., Magyar, C., Balazs, A. and Rajczy, P.: Calculation of the infrared and Raman spectra of short linear carbon chains, in Kuzmany, H., Fink, J., Mehring, M. and Roth, S. (eds.), Electronic Properties of Novel Materials: Progress in Fullerene Research, World Sci. Publ. London, (1994), p. 362–365.

    Google Scholar 

  11. Kurti, J., Magyar, C., Balazs, A. and Rajczy, P.: Vibrational analysis for short carbon chains with alternating and cumulenic structure, Synth. Metals 71 (1995), 1865–1866.

    Article  Google Scholar 

  12. Hawthorne, M.F.: Comments on certain reports of carbonaceneous linear polyacetylenes, Mater. Res. Counc. Summer Conf. 1 (1973), 135–140.

    CAS  Google Scholar 

  13. Smith, P.P.K. and Buseck, P.R.: Carbyne forms of carbon, Science 229 (1985), 486–487.

    Article  CAS  Google Scholar 

  14. Kastner, J., Kuzmany, H., Kavan, L., Dousek, F.P. and Kürti, J.: Reductive preparation of carbyne with high yield. An in situ Raman scattering study, Macromolecules 28 (1995), 344–353.

    Article  CAS  Google Scholar 

  15. Weltner, W. and Van Zee, R.J.: Carbon molecules, ions, and clusters, Chem. Rev. 89 (1989), 1713–1747.

    Article  CAS  Google Scholar 

  16. Martin, J.M.L., Francois, J.P. and Gijbels, R.: Ab initio study of the infrared spectra of linear C n clusters [n=6–9], J. Chem. Phys. 93 (1990), 8850–8861.

    Article  CAS  Google Scholar 

  17. Bjarnov, E., Christensen, D.H., Nielsen, O.F., Augdahl, E., Kloster-Jensen, E. and Rogstad, A.: Vibrational spectra and force field of triacetylene, Spectrochim. Acta 30A (1974), 1255–1262.

    CAS  Google Scholar 

  18. Kloster-Jensen, E.: Reindarstellung und Elektronenspektrum des Triacetylens, Tetraacetylens und Pentaacetylens, Angew. Chem. 84 (1972), 483–485.

    Article  Google Scholar 

  19. Udod, I.A., Shchurik, V.I., Bulychev, B.M., Sirotinkin, S.P., Guseva, M.B., Babaev, V.G., Kudryavtsev, Y.P. and Evsyukov, S.E.: Formation of carbyne in the interaction of polyacetylene with potassium under high quasi-hydrostatic pressure, J. Mater. Chem. 3 (1993), 413–416.

    Article  CAS  Google Scholar 

  20. Kijima, M., Sakai, Y. and Shirakawa, H.: Electrochemical synthesis of carbyne catalyzed by nickel complex, Synth. Metals 71 (1995), 1837–1840.

    Article  CAS  Google Scholar 

  21. Kavan, L., Hlavaty, J., Kastner, J. and Kuzmany, H.: Electrochemical carbyne: synthesis and stability studied by Raman scattering, Carbon 33 (1995), 1321–1329.

    Article  CAS  Google Scholar 

  22. Yamada, Y., Inada, Y., Shiraishi, M., Oka, T., Oya, A., Miyashita, K. and Ozawa, T.: Preparation of carbyne by chemical reduction of PTFE, Proc. 4th IUMRS Conference, Makuhari, Japan, Sept. 16–18, 1997, p. I3,5.

    Google Scholar 

  23. Evsyukov, S.E., Paasch, S., Thomas, B., Heimann, R.B. and Kudryavtsev, Y.P.: Formation of carbyne from by chemical dehydrohalogenation of PVDC. A 13-C solid-state NMR study, Ber. Bunsenges. Phys. Chem. 101 (1997), 837–841.

    Article  CAS  Google Scholar 

  24. Stezeryanskiy, E.A., Litovcenko, K.I. and Kublanovskiy, V.S.: Effect of the electrolyte cation on electrochemical reduction of poly(chlorotrifluoroethylene), Ukr. Khim. Zhur. 55 (1989), 826–829. (Soviet Prog. Chem. 1989, 55, 42).

    Google Scholar 

  25. Vointseva, I.I., Gilman, L.M., Kudryavtsev, Y.P., Evsyukov, S.E., Pesin, L.A., Gribov, I.V., Moskvina, N.A. and Khvostov, V.V.: Chemical dehydrochlorination of polytrichlorobutadienes — a new route to carbynes, Eur. Polym. J. 32 (1996), 61–68.

    Article  CAS  Google Scholar 

  26. Udod, I.A., Bulychev, B.M. and Sirotinkin, S.P.: An interaction of amorphous carbyne with sodium: the formation of carbyne intercalation compounds, Synth. Metals 60 (1993), 57–62.

    Article  CAS  Google Scholar 

  27. Korshak, V.V., Kudryavtsev, Y.P., Korshak, Y.V., Evsyukov, S.E., Khvostov, V.V., Babaev, V.G. and Guseva, M.B.: Formation of carbyne by dehydrohalogenation, Makrom. Chem. Rapid Commun. 9 (1988), 135–140.

    Article  CAS  Google Scholar 

  28. Kavan, L. and Kastner, J.: Carbyne forms of carbon: continuation of the story, Carbon 32 (1994), 1533–1536.

    Article  CAS  Google Scholar 

  29. Nakamizo, M., Kammereck, R. and Walker, P.L.: Laser Raman studies on carbons, Carbon 12 (1974), 259–267.

    Article  CAS  Google Scholar 

  30. Wright, R.B., Varma, R. and Gruen, D.M.: Raman scattering and SEM studies of graphite and silicon carbide surfaces bombarded with energetic protons, deutrons and helium ions, J. Nuclear Mater. 63 (1976), 415–421.

    Article  CAS  Google Scholar 

  31. Vidano, R.P., Fischbach, D.B., Willis, L.J. and Loehr, T.M.: Observation of Raman band shifting with excitation wavelengh for carbons and graphites, Solid State Commun. 39 (1981), 341–344.

    Article  CAS  Google Scholar 

  32. Tither, D., Matthews, A., Fitzgerald, A.G., Storey, B.E., Henderson, A.E., Moir, P.A., Dines, T.J., Bower, D.I., Lewis, E.L.V., Doughty, G. and Foster W.: Characterisation of carbon films containing boron and nitrogen, Carbon 27 (1989), 899–907.

    Article  CAS  Google Scholar 

  33. Akagi, K., Nishiguchi, M. and Shirakawa, H.: One-dimensional conjugated carbyne — synthesis and properties, Synth. Metals 17 (1987), 557–562.

    Article  CAS  Google Scholar 

  34. Matsui, H., Yamaguchi, C., Yasuda, A. and Kawase, N.: Preparation of carbyne by electrochemical reduction of PTFE with reactive anode, Proc. 4th IUMRS Conference, Makuhari, Japan, Sept. 16–18, 1997, p. I 5,20.

    Google Scholar 

  35. Oka, T., Araki, T., Oya, A., Yamada, Y., Shiraishi, M., Miyashita, K. and Ozawa, T.: Preparation and characterization of carbyne derived from aliphatic compounds, Proc. 4th IUMRS Conference, Makuhari, Japan, Sept. 16–18, 1997, p. I5,19.

    Google Scholar 

  36. Bedryugin, V.V., Kudryavtsev, Y.P., Evsyukov, S.E. and Korshak, Y.V.: Raman spectra of beta-carbyne, Dokl Akad. Nauk SSSR 305 (1989), 362–365. (Dokl. Phys. Chem. 1989, 305, 217).

    Google Scholar 

  37. Kijima, M., Sakai, Y. and Shirakawa, H.: A novel approach for synthesis of carbyne by electroreductive polymerization of diiodoacetylene catalyzed by Ni complex, Chem. Lett. (1994), 2011–2014.

    Google Scholar 

  38. Shimoyama, M., Niino, H. and Yabe, A.: A KrF excimer laser induced dehydrochlorination of chlorinated poly(vinylchloride): preparation of conjugated polyene and polyyne, Makrom. Chem. 193 (1992), 569–574.

    Article  CAS  Google Scholar 

  39. Kijima, M., Toyabe, T. and Shirakawa, H.: Novel approach to synthesis of a carbyne film by electrochemical reduction of hexachlorobuta-1,3-diene, Chem. Commun. (1996), 2273–2274.

    Google Scholar 

  40. Springborg, M. and Kavan, L.: On the stability of polyyne, Chem. Phys. 168 (1992), 249–258.

    Article  CAS  Google Scholar 

  41. Hlavaty, J. and Kavan, L.: Modification of electrochemical carbon by in-situ generated carbenes, Carbon 35 (1997), 127–131.

    Article  CAS  Google Scholar 

  42. Kavan, L. and Dousek, F.P.: Carbynoid species in electrochemical polymeric carbon, Synth. Metals 58 (1993), 63–72.

    Article  CAS  Google Scholar 

  43. Bening, R.C. and McCarthy, T.J.: Surface treatment of poly(tetrafluoroethylene-co-hexafluoropropene), introduction of alcohol functionality, Macromolecules 23 (1990), 2648–2655.

    Article  CAS  Google Scholar 

  44. Iqbal, Z., Ivory, D.M., Szobota, J.S., Elsenbaumer, R.L. and Baughman, R.H.: Polyacetylene formed by reduction of PTFE with benzoin dianion, Macromolecules 19 (1986), 2992–2996.

    Article  CAS  Google Scholar 

  45. Costello, C.A. and McCarthy, T.J.: Surface selective introduction of specific functionalities onto PTFE, Macromolecules 20 (1987), 2819–2828.

    Article  CAS  Google Scholar 

  46. Mernagh, T.P., Cooney, R.P. and Spink, J.A.: Chemical origin of SERS by water on Ag and carbon overlayered Ag electrodes, J. Chem. Soc. Faraday Trans. 180 (1984), 3469–3479.

    Google Scholar 

  47. Nishihara, H., Harada, H., Tateishi, M., Ohashi, K. and Aramaki, K.: Graphite synthesis by electrochemical reduction of hexachlorobuta-1,3-diene, J. Chem. Soc. Faraday Trans. 87 (1991), 1187–1192.

    Article  CAS  Google Scholar 

  48. Nishihara, H., Harada, H., Kaneko, S., Tateishi, M. and Aramaki, K.: Synthesis of graphite film by electrochemical reduction of hexachlorobuta-1,3-diene, J. Chem. Soc. Chem. Commun. (1990), 26–27.

    Google Scholar 

  49. Kastner, J., Kuzmany, H., Paloheimo, J. and Dyreklev, P.: Resonance Raman scattering from spin-coated and Langmuir-Blodgett poly(3-alkyl-thiophene) films, Synth. Metals 55-57 (1993), 558–563.

    Article  Google Scholar 

  50. Saito, K. and Koga, Y.: Carbon produced by laser ablation of graphite in He and N2, Nucl. Instr. Meth. Phys. Res. B 121 (1997), 400–403.

    Article  Google Scholar 

  51. Komatsu, T., Nomura, M., Kakudate, Y., Fujiwara, S. and Heimann, R.B.: Characterization of dehydrochlorinated poly(vinylidene chloride) and the shock-compressed material, Macromol. Chem. Phys. 196 (1995), 3031–3040.

    Article  CAS  Google Scholar 

  52. Guseva, M.B., Babaev, V.G., Kudryavtsev, Y.P., Alexandrov, A.F. and Khvostov, V.V.: Medical material based on carbyne, Diamond Rel. Mater. 4 (1995), 1142–1144.

    Article  CAS  Google Scholar 

  53. Dietz, P., Hansma, P.K., Ihn, K.J., Motamedi, F. and Smith, P.: Molecular structure and thickness of highly oriented PTFE measured by atomic force microscopy, J. Mater. Sci. 28 (1993), 1372–1376.

    Article  CAS  Google Scholar 

  54. Schott, M.: Preparation and properties of highly oriented PTFE films, Synth. Metals 67 (1994), 55–61.

    Article  CAS  Google Scholar 

  55. Tasker, S., Chambers, R.D. and Badyal, J.P.S.: Surface defluorination of PTFE by sodium atoms, J. Phys. Chem. 98 (1994), 12442–12446.

    Article  CAS  Google Scholar 

  56. Kavan, L.: Electrochemical preparation of hydrogen-free carbyne-like materials, Carbon in press.

    Google Scholar 

  57. Kavan, L.: Electrochemical carbonization of fluoropolymers, in Thrower, P.A. (ed.), Chemistry and Physics of Carbon, Vol 23, Marcel Dekker, New York, (1991), p. 69–171.

    Google Scholar 

  58. Kavan, L., Dousek, F.P., Weber, J. and Micka, K.: Electronic resistivity of carbon in the products of electrochemical reduction of poly(tetrafluoroethylene), Carbon 26 (1988), 235–243.

    Article  CAS  Google Scholar 

  59. Kavan, L., Dousek, F.P. and Micka, K.: Time-dependent electrical resistivity of carbon, J. Phys. Chem. 94 (1990), 5127–5134.

    Article  CAS  Google Scholar 

  60. Kavan, L., Dousek, F.P. and Kubelková, L.: Chemisorption of oxygen on carbon produced by electrochemical reduction of poly(tetrafluoroethylene), Carbon 24 (1986), 671–676.

    Article  CAS  Google Scholar 

  61. Kavan, L. and Dousek, F.P.: Reaction of hexafluorobenzene and hexadecafluorohexane with lithium amalgam, J. Fluorine Chem. 41 (1988), 383–391.

    Article  CAS  Google Scholar 

  62. Kijima, M., Toyabe, T. and Shirakawa, H.: Electrocatalytic dehydrofluorination of PVDF, Chem. Lett. 1995 (1995), 553–554.

    Article  Google Scholar 

  63. Kijima, M., Toyabe, T., Shirakawa, H., Kawata, S., Kyotani, H., Nakamura, Y. and Endo, M.: Synthesis of carbyne by cathodic electrolysis of hexachlorobutadiene, Synth. Metals 86 (1997), 2279

    Article  CAS  Google Scholar 

  64. Barker, D.J., Brewis, D.M., Dahm, R.H. and Hoy, L.R.J.: Anisotropic electrochemical reduction of PTFE, J. Mater. Sci. 14 (1979), 749–751.

    CAS  Google Scholar 

  65. Kudryavtsev, Y.P. and Evsyukov, S.E.: Formation of diamond from carbyne, Diamond Rel. Mater. (1997)

    Google Scholar 

  66. Pud, A.A. and Shapoval, G.S.: Cathodic transformation of PTFE in the presence of electron mediator, Theor. Exp. Khim. 32 (1996), 40–42. (Theor. Exp. Chem. 1996, 32, 38).

    CAS  Google Scholar 

  67. Pud, A.A. and Shapoval, G.S.: Electrochemistry as the way to transform polymers, Macrom. Reports A32(Suppls. 5&6) (1995), 629–638.

    CAS  Google Scholar 

  68. Ohmura, K., Kijima, M. and Shirakawa, H.: Synthesis of conducting polymers with conjugated carbon-carbon triple bonds by electrochemical condensation of acetylene derivatives catalyzed by coper complex, Synth. Metals 84 (1997), 417–418.

    Article  CAS  Google Scholar 

  69. Sladkov, A.M., Kasatochkin, V.I., Kudryavtsev, Y.P. and Korshak, V.V.: Synthesis and properties of linear carbons, Izvest. Akad. Nauk Ser. Khim. 12 (1968), 2697–2704.

    Google Scholar 

  70. Cataldo, F.: Synthesis of carbonaceous material rich in carbyne, a carbon allotrope by coupling reaction of copper acetylide, Eur. J. Solid State Inorg. Chem. 34 (1997), 53–63.

    CAS  Google Scholar 

  71. Hattori, T., Kijima, M. and Shirakawa, H.: Oxidative polycondensation of acetylene by iodine in the presence of a palladium-copper catalyst, Synth. Metals 84 (1997), 357–358.

    Article  CAS  Google Scholar 

  72. Tanuma, S. and Palnichenko, A.V.: Synthesis of low density carbon crystal “carbolite” by quenching of carbon gas, J. Mater. Res. 10 (1995), 1120–1125.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kavan, L., Kastner, J. (1999). Raman and Infrared Spectroscopy. In: Heimann, R.B., Evsyukov, S.E., Kavan, L. (eds) Carbyne and Carbynoid Structures. Physics and Chemistry of Materials with Low-Dimensional Structures, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4742-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4742-2_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5993-0

  • Online ISBN: 978-94-011-4742-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics