Advertisement

Sharp Energy Estimates for Finite Element Approximations of Non-Convex Problems

  • M. Chipot
  • S. Müller
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 66)

Abstract

The goal of this note is to expose in a simple situation the key arguments which allow one to prove sharp energy estimates in the numerical analysis of problems with multiple-well energy in the calculus of variations. Let us recall that such problems arise naturally for instance in materials science. We refer the reader for this matter to [1], [5], [6], [7], [10]. Note also that our technique borrows widely from [8], [9] and can be extended to more general situations — see [3].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.M. Ball and R.D. James, Proposed experimental tests of a theory of fine microstructure and the two well problem, Phil. Trans. R. Soc. London A, 338, (1992), 389–450.ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    M. Chipot, Numerical analysis of oscillations in nonconvex problems, Numerische Mathematik 59, (1991), 747–767.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    M. Chipot and S. Müller, In preparation.Google Scholar
  4. 4.
    Ph. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1978).zbMATHGoogle Scholar
  5. 5.
    J. Ericksen, Constitutive theory for some constrained elastic crystal, Int. J. Solids and Structures, 22 (1986), 951–964.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    R. James and D. Kinderlehrer, Theory of diffusionless phase transitions, Lecture Notes in Physics, 344, Springer Verlag (M. Rascle, D. Serre and M. Slemrod, Eds.), (1989), 51–84.Google Scholar
  7. 7.
    R. Kohn, Relaxation of a double-well energy, Continuum Mech. Thermodyn., 3 (1991), 193–236.MathSciNetADSCrossRefzbMATHGoogle Scholar
  8. 8.
    R. Kohn and S. Müller, Branching of twins near an austenite-martensite interface, Phil. Mag. A, 66 (1992), 697–715.ADSCrossRefGoogle Scholar
  9. 9.
    R. Kohn and S. Müller, Surface energy and microstructure in coherent phase transitions, CPAM, 47 (1994), 405–435.zbMATHGoogle Scholar
  10. 10.
    M. Luskin, On the computation of crystalline microstructure, Acta Numerica, (1996), 191–257.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • M. Chipot
    • 1
  • S. Müller
    • 2
  1. 1.Mathematische InstitutUniversität ZürichZürichSwitzerland
  2. 2.MPI für Mathematik in den NaturwissenschaftenLeipzigGermany

Personalised recommendations