Advertisement

Stability of Moving Fronts Under Griffith Criterion: A Computational Approach Using Integral Equations and Domain Derivatives

  • Marc Bonnet
Conference paper
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 66)

Abstract

PRESENTATION. Consider a linearly elastic body Ω ∈ R 3. Its external boundary is divided into two complementary parts S u (supporting prescribed displacements: u = ū) and S t (supporting prescribed tractions: σ. n = t). Besides, a crack (described by an open surface S across which the displacement is discontinuous: ϕ = u + — u - denotes the crack opening displacement (COD)) is embedded in Ω.

Keywords

Energy Release Rate Crack Front Crack Opening Displacement Boundary Integral Equation Crack Opening Displacement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. BoNNEMAY. Equations intégrales pour l’élasticité plane. PhD thesis, Université Paris VI, France, 1979.Google Scholar
  2. 2.
    M. Bonnet. Regularized direct and indirect symmetric variational BIE formulations for three-dimensional elasticity. Engng. Anal. Bound. Elem., 15:93–102, 1995.CrossRefGoogle Scholar
  3. 3.
    M. Bonnet, G. MAIER, C. POLIZZOTTO. On symmetric galerkin boundary element method. Appl. Mech. Rev., 1997. (in preparation).Google Scholar
  4. 4.
    H. D. Bui. An integral equation method for solving the problem of a plane crack of arbitrary shape. J. Mech. Phys. Solids, 25:29–39, 1977.MathSciNetADSCrossRefzbMATHGoogle Scholar
  5. 5.
    PH. Destuynder, M. Djaoua, S LESCURE. Quelques remarques sur la mécanique de la rupture élastique. J. Mécan. Théor. Appl., 2:113–135, 1983.zbMATHGoogle Scholar
  6. 6.
    S. Li, M.E. Mear, L. Xioa. Symmetric weak-form integral equation method for three-dimensional fracture analysis. Comp. Meth. Appl. Mech. Engng., 1997. (to appear).Google Scholar
  7. 7.
    P. Mialon. Calcul de la dérivée d’une grandeur par rapport à un fond de fissure par la méthode 0. Bulletin EDF/DER série c vol. 3, Electricité de France, 1987.Google Scholar
  8. 8.
    J. C. Nedelec. Integral equations with non integrable kernels. Integral equations and operator theory, 5:562–572, 1982.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Q. S. NGUYEN, R. M. PRADEILLES-DUVAL, C. STOLZ. Sur une loi régularisante en rupture et endommagement fragile. C.R. Acad. Sci. Paris, 11-309:1515–1520, 1989.Google Scholar
  10. 10.
    R. M. PRADEILLES-DUVAL. Evolution de systèmes avec surfaces de discontinuité mobiles: application au délaminage. PhD thesis, Ecole Polytechnique, Palaiseau, France, 1992.Google Scholar
  11. 11.
    X. Z. Suo and A COMBESCURE. Sur une formulation mathématique de la dérivée de l’énergie potentielle en théorie de la rupture fragile. C.R. Acad. Sci. Paris, série II,, 308:1119, 1122 1989.MathSciNetGoogle Scholar
  12. 12.
    H. TADA, P. PARIS, G. IRWIN. The stress analysis of cracks handbook. Technical report, Del. Research Corporation, Hellertown, Pennsylvania, USA, 1973.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Marc Bonnet
    • 1
  1. 1.Laboratoire de Mécanique des SolidesEcole PolytechniquePalaiseau cedexFrance

Personalised recommendations