Global Solutions with Contact Discontinuities for Quasilinear Hyperbolic Systems of Conservation Laws

  • Li Ta-Tsien
Conference paper
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 66)


We consider the quasilinear system of conservation laws {fy(1)|253-1} where u = (u 1,…, u n )T is an unknown vector function of (t, x), f : ℝ n → ℝ n is a given smooth vector function of u. Suppose that on the domain under consideration, system (1) is strictly hyperbolic, i.e., the Jacobi matrix A(u)=f(u) possesses n distinct real eigenvalues: {fy(2)|253-2}


Global Existence Riemann Problem Contact Discontinuity Weak Discontinuity Quasilinear Hyperbolic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lax, P.D., (1957) Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math., 10, pp. 537–556.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Li Ta-tsien and Yu Wen-ci, (1985) Boundary Value Problems for Quasilinear Hyperbolic Systems, Duke University Mathematics Series V.Google Scholar
  3. 3.
    Li Ta-tsien and Kong De-xing, (1997) Solutions globales avec discontinuités de contact pour les systèmes hyperboliques quasi linéaires de lois de conservation, C.R. Acad. Sci. Paris, t. 324, Série 1, pp. 621–626.ADSCrossRefGoogle Scholar
  4. 4.
    Li Ta-tsien, Zhou Yi and Kong De-xing, (1994) Weak linear degeneracy and global classical solutions for general quasilinear hyperbolic systems, Comm. in Partial Differential Equations, 19, pp. 1263–1317.CrossRefGoogle Scholar
  5. 5.
    Li Ta-tsien, Zhou Yi and Kong De-xing, (1997) Global classical solutions for general quasilinear hyperbolic systems with decay initial data, Nonlinear Analysis, Theory, Methods & Applications, 28, pp. 1299–1332.CrossRefzbMATHGoogle Scholar
  6. 6.
    Li Ta-tsien, Kong De-xing and Zhou Yi, (1996) Global classical solutions for quasi-linear non-strictly hyperbolic systems, Nonlinear Studies, 3, pp. 203–229.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Li Ta-Tsien
    • 1
  1. 1.Department of MathematicsFudan UniversityShanghaiChina

Personalised recommendations