Advertisement

Micromechanical Modelling Of The Thermomechanical Behavior Of Shape Memory Alloys

  • E. Patoor
  • M. Berveiller
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 66)

Abstract

This paper uses modem scale transition methods to establish the thermomechanical behavior of shape memory alloys. In section 2, kinematics, kinetics and thermodynamical aspects related to the martensitic transformation are described from a continuum point of view using moving boundary concepts. Relations so obtained are applied in section 3 using a discrete internal variables description. Polycrystalline behavior so compute shows excellent agreement with experimental measurements.

Keywords

Martensitic Transformation Shape Memory Alloy Representative Volume Element Internal Variable Transformation Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Delaey L. (1991) Diffusionless transformations, in R.W. Cahn, P. Haasen and EJ. Kramen (eds), Materials Science and Technologies, Vol. 5: Phase Transformations in Materials, VCH Publishers, pp. 339–404.Google Scholar
  2. 2.
    Eshelby J.D. (1961) Elastic inclusions and inhomogeneities, in I.N. Sneddon and R. Hill (eds), Progress in Solids Mechanics, Vol. 2, North-Holland, Amsterdam, pp. 87–140.Google Scholar
  3. 3.
    Kröner E. (1961) Zur plastischen Verformung des vielkristalls, Acta Metall., 9, 155–161.CrossRefGoogle Scholar
  4. 4.
    Kröner E. (1989) Modified Green functions in the theory of heterogeneous and/or anisotropic elastic media, in G. J. Weng, M. Taya and M. Abe (eds), Micromechanics and Inhomogeneity, Vol. 2, Springer Verlag.Google Scholar
  5. 5.
    Berveiller M. and Zaoui A. (1984) Modelling of the plastic behavior of inhomogeneous media, J. Engng. Mat. and Technology, 106, pp. 295–299.CrossRefGoogle Scholar
  6. 6.
    Hadamard J. (1903) Leçons sur la propagation des ondes et les équations de l’hydrodynamique, Cours du Collège de France, Librairie Scientifique A. Hermann, Paris.zbMATHGoogle Scholar
  7. 7.
    Patoor E. and Berveiller M. (1997) Micromechanical modelling of the thermomechanical behavior of shape memory alloys, in M. Berveiller and F. D. Fischer (eds) Mechanics of Solids with Phase Changes, CISM Courses and lectures n° 368, Springer Wien New York, pp. 121–188.Google Scholar
  8. 8.
    Moumni Z. and Nguyen Q. S. (1996) A model of materials with phase change and applications, Coll. C1, J. de Physique IV, C1-335-345.Google Scholar
  9. 9.
    Entemeyer, D. (1996) Etude micromécanique du comportement thermomécanique des alliages à mémoire de forme, Thèse de Doctorat, Université de Metz, France.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • E. Patoor
    • 1
  • M. Berveiller
    • 1
  1. 1.Laboratoire de Physique et Mécanique des Matériaux (UMR CNRS 7554)Institut Supérieur de Génie Mécanique et Productique ENSAMMETZFrance

Personalised recommendations