Advertisement

Strong Solutions to Equations of Visco-Ther-Mo-Plasticity with a Temperature-Dependent Hysteretic Strain — Stress Law

  • Pavel Krejčí
  • Jürgen Sprekels
Conference paper
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 66)

Abstract

We propose a thermodynamically consistent model for the uni-axial behaviour of visco-thermo-elasto-plastic materials where the thermoplastic stress component σ p is characterized by a constitutive law of the formσ p (x,t) = P[ε,θ(x,t)](x,t), where ε, θ denote the fields of strain and absolute temperature, respectively, and where {P[., θ]}ε>o is a family of (rate-independent) hysteresis operators of Prandtl-Ishlinskii type, parametrized by the absolute temperature. The system of state equations governing the space-time evolution of the material is derived. A survey of existence, uniqueness and continuous dependence results for an initial-boundary value problem for this system is given.

Keywords

Internal Energy Kinematic Hardening Thermic Dilation Quasilinear Wave Equation Stop Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Brokate, J. Sprekels (1996): Hysteresis and Phase Transitions. Heidelberg, Springer-Verlag.CrossRefzbMATHGoogle Scholar
  2. 2.
    A. Yu. Ishlinskii (1944): Some applications of statistical methods to describing deformations of bodies. Izv. AN SSSR, Techn. Ser. 9, 583–590.Google Scholar
  3. 3.
    M.A. Krasnosel’skii, A.V. Pokrovskii (1989): Systems with hysteresis, Springer-Verlag, Berlin. Russian edition: Nauka, Moscow 1983.CrossRefGoogle Scholar
  4. 4.
    P. Krejčí (1986): Hysteresis and periodic solutions of semilinear and quasilinear wave equations. Math. Z. 193, 247–264.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    P. Krejčí (1991): Vector hysteresis models. European J. Appl. Math. 2, 281–292.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    P. Krejčí (1996): Hysteresis, convexity and dissipation in hyperbolic equations, Gakkōtosho, Tokyo.zbMATHGoogle Scholar
  7. 7.
    P. Krejci, J. Sprekels (to appear): On a system of nonlinear PDE’s with temperature-dependent hysteresis in one-dimensional thermoplasticity.Google Scholar
  8. 8.
    P. Krejci, J. Sprekels (in preparation): Global solutions to a system of one-dimensional thermo-visco-elasto-plasticity.Google Scholar
  9. 9.
    G.A. Maugin (1992): The thermomechanics of plasticity and fracture, Cambridge University Press, Cambridge.CrossRefzbMATHGoogle Scholar
  10. 10.
    I. Müller (1985): Thermodynamics. Pitman, New York.zbMATHGoogle Scholar
  11. 11.
    L. Prandtl (1928): Ein Gedankenmodell zur kinetischen Theorie der festen Körper. Z. Ang. Math. Mech. 8, 85–106.CrossRefzbMATHGoogle Scholar
  12. 12.
    M. Silhavy (1996): The mechanics and thermodynamics of continuous media. Springer, Berlin — Heidelberg.Google Scholar
  13. 13.
    A. Visintin (1987): Rheological models and hysteresis effects. Rend. Sem. Mat. Univ. Padova 77, 213–241.MathSciNetzbMATHGoogle Scholar
  14. 14.
    A. Visintin (1994): Differential models of hysteresis. Springer — Verlag, Berlin.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Pavel Krejčí
    • 1
  • Jürgen Sprekels
    • 1
  1. 1.Weierstrass Institute for Applied Analysis and StochasticsBerlinGermany

Personalised recommendations