Advertisement

Damage and Gradient of Damage in Transient Dynamics

  • B. Nedjar
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 66)

Abstract

This paper is concerned with the modelling of progressive degradation in transient dynamics. Within the framework of the continuum damage mechanics, a model involving the gradient of damage is investigated. This model together with the equations of motion in dynamics are issued from a new formulation of the principle of virtual power recently proposed.

Keywords

Damage Evolution Inertia Effect Finite Element Formulation Transient Dynamic Continuum Damage Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Comi, C and Perego, U. (1997). On visco-damage models for concrete at high strain rates, in Proc. of Computational Plasticity, D.J.R. Owen, E. Ofiate and E. Hinton (eds.), Barcelona, Pineridge Press, 1551–1555.Google Scholar
  2. 2.
    Dubé, J.F., Pijaudier-Cabot, G. and La Borderie, C. (1994). Rate dependent damage model for concrete in dynamics. AS CE J. Eng. Mech., 122, 939–947.CrossRefGoogle Scholar
  3. 3.
    Frémond, M. and Nedjar, B. (1993). Endommagement et principe des puissances virtuelles. C. R. Acad. Sci. Paris, 317(7), serie II, 857–864.zbMATHGoogle Scholar
  4. 4.
    Frémond, M. and Nedjar, B. (1996). Damage, gradient of damage and principle of virtual power. Int. J. Solids Struc., 33(8), 1083–1103.CrossRefzbMATHGoogle Scholar
  5. 5.
    Germain, P., Nguyen, Q.S. and Suquet, P. (1983). Continuum thermodynamics. Jour. Appl. Mech., ASME, 50, 1010–1021.ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    Humbert, P. (1989). CESAR-LCPC, un code général de calcul par éléments finis. Bull. Liais. Labo. des Ponts et Chaussées, 160, 112–116.Google Scholar
  7. 7.
    Nedjar, B. (1995). Mécanique de l’endommagement. Théorie du premier gradient et application au béton. Doctorat de l’Ecole Nationale des Ponts et Chaussées, Paris.Google Scholar
  8. 8.
    Needleman, A. (1987). Material rate dependance and mesh sensitivity in localization problems. Comp. Meth. Appl. Mech. Engng., 67, 68–85.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • B. Nedjar
    • 1
  1. 1.Laboratoire de Mécanique et TechnologieENS Cachan/CNRS/Université Paris VICachanFrance

Personalised recommendations