Advertisement

Global Solution to the Penrose-Fife Phase Field Model with Special Heat Flux Laws

  • Pierluigi Colli
  • Philippe Laurençot
  • Jürgen Sprekels
Conference paper
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 66)

Abstract

The phase field model introduced by Penrose and Fife is considered for diffusive phase transitions with non conserved order parameter. Different motivations lead to investigate the case when the heat flux is the gradient of some function of the absolute temperature ϑ behaving like 1/ϑ as ϑ approaches 0 and like -ϑ as ϑ↗ +∞. Uniqueness is proved for the solution of related initial and boundary value problems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Colli, P. and Laurençot, Ph. (1998) Weak solutions to the Penrose-Fife phase field model for a class of admissible heat flux laws, Physica D, Vol. no. 111, pp. 311–334.MathSciNetADSCrossRefzbMATHGoogle Scholar
  2. 2.
    Colli, P. and Sprekels, J. (1995) On a Penrose-Fife model with zero interfacial energy leading to a phase-field system of relaxed Stefan type, Ann. Mat. Pura Appl. (4), Vol. no. 169, pp. 269–289.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Colli, P. and Sprekels, J. (1998) Weak solution to some Penrose-Fife phase-field systems with temperature-dependent memory, J. Differential Equations, Vol. no. 142, pp. 54–77.MathSciNetCrossRefzbMATHADSGoogle Scholar
  4. 4.
    Horn, W., Laurençot, Ph. and Sprekels, J. (1996) Global solutions to a Penrose-Fife phase-field model under flux boundary conditions for the inverse temperature, Math. Methods Appl. Sci., Vol. no. 19, pp. 1053–1072.MathSciNetADSCrossRefzbMATHGoogle Scholar
  5. 5.
    Kenmochi, N. and Niezgódka, M. (1993/94) Systems of nonlinear parabolic equations for phase change problems, Adv. Math. Sci. Appl., Vol. no. 3, pp. 89–117.MathSciNetGoogle Scholar
  6. 6.
    Laurençot, Ph. (1994) Solutions to a Penrose-Fife model of phase-field type, J. Math. Anal. Appl., Vol. no. 185, pp. 262–274.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Laurençot, Ph. (1998) Weak solutions to a Penrose-Fife model with Fourier law for the temperature, J. Math. Anal. Appl., Vol. no. 219, pp. 331–343.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Lions, J.L. and Magenes, E. (1972) Non-homogeneous boundary value problems and applications, Vol. I. Springer-Ver lag, Berlin.CrossRefGoogle Scholar
  9. 9.
    Penrose, O. and Fife, P.C. (1990) Thermodynamically consistent models of phase field type for the kinetics of phase transitions, Physica D, Vol. no. 43, pp. 44–62.MathSciNetADSCrossRefzbMATHGoogle Scholar
  10. 10.
    Sprekels, J. and Zheng, S. (1993) Global smooth solutions to a thermodynamically consistent model of phase-field type in higher space dimensions, J. Math. Anal. Appl., Vol. no. 176, pp. 200–223.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Pierluigi Colli
    • 1
  • Philippe Laurençot
    • 2
  • Jürgen Sprekels
    • 3
  1. 1.Dipartimento di Matematica “F. Casorati”Università di PaviaPaviaItaly
  2. 2.Institut Elie Cartan — NancyUniversité de Nancy IVandœuvre les Nancy CedexFrance
  3. 3.Weierstraβ-Institut für Angewandte Analysis und StochastikWIASBerlinGermany

Personalised recommendations