Advertisement

Delamination of active layers in piezoelectric laminates

  • Paolo Bisegna
  • Franco Maceri
Conference paper
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 66)

Abstract

A thin piezoelectric layer, bonded on a plane rigid support up to an initial circular defect of adhesion, is considered. The piezoelectric layer is actuated by an applied transversal difference of electric potential, which may induce a buckling of the debonded zone. The post-buckling behaviour is studied by using a suitable generalization of the von Karman geometrically nonlinear plate theory. The quasi-static delamination process induced by the buckling phenomenon is investigated via the classical Griffith-Irwin energy criterion.

Key words

Piezoelectric laminates delamination Griffith-Irwin criterion von Karman plate theory post-buckling behaviour 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bisegna, P. and Maceri, F. (1996) A consistent theory of thin piezoelectric plates. J. Intell. Mater. Syst. Struct. 7 372–389.CrossRefGoogle Scholar
  2. 2.
    Bisegna, P. (1997) A theory of piezoelectric laminates. Rend. Mat. Acc. Lincei (s. 9) 8 137–165.MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bodner, S. R. (1954) The post buckling behavior of a clamped circular plate. Quart. Appl. Math. 12 397–401.MathSciNetGoogle Scholar
  4. 4.
    Bottega, W. J. (1995) Separation failure in a class of bonded plates. Composite Structures 30 253–269.CrossRefGoogle Scholar
  5. 5.
    Bruno, D. and Grimaldi, A. (1990) Delamination failure of layered composite plates loaded in compression. Int. J. Solids Structures 26 313–330.CrossRefGoogle Scholar
  6. 6.
    Chai, H., Babcock, C. D. and Knauss, W. G. (1981) One dimensional modelling of failure in laminated plates by delamination buckling. Int. J. Solids Structures 17 1069–1083.CrossRefzbMATHGoogle Scholar
  7. 7.
    Fichera, G. (1972) Boundary value problems in elasticity with unilateral constraints. In: Flügge, S. (ed.): Handbuch der Physik, Band VIa/2. Springer-Verlag, Berlin.Google Scholar
  8. 8.
    Friedrichs, K. O. and Stoker, J. J. (1941) The non-linear boundary value problem of the buckled plate. Amer. J. Math. 63 839–888.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Friedrichs, K. O. and Stoker, J. J. (1942) Buckling of the circular plate beyond the critical thrust. J. Appl Mech. 9 A7–A14.MathSciNetGoogle Scholar
  10. 10.
    Giannakopoulos, A. E., Nilsson, K.-F. and Tsamasphyros, G. (1995) The contact problem at delamination. I. Appl. Mech. 62 989–996.CrossRefzbMATHGoogle Scholar
  11. 11.
    Ikeda, T. (1990) Fundamentals of Piezoelectricity. Oxford University Press, Oxford.Google Scholar
  12. 12.
    Kardomateas, G. A. (1993) The initial post-buckling and growth behaviour of internal delaminations in composite plates. J. Appl. Mech. 60 903–910.ADSCrossRefzbMATHGoogle Scholar
  13. 13.
    Ladevèze, P. (1992) A damage computational method for composite structures. Computers and Structures 44 79–87.ADSCrossRefGoogle Scholar
  14. 14.
    Panagiotopoulos, P. D. (1985) Inequality problems in mechanics and applications. Convex and nonconvex energy functions. Birkhauser Verlag, Basel.CrossRefzbMATHGoogle Scholar
  15. 15.
    Point, N. and Sacco, E. (1996) A delamination model for laminated composites. Int. J. Solids Structures 33 483–509.CrossRefzbMATHGoogle Scholar
  16. 16.
    Storakers, B. and Andersson, B. (1988) Nonlinear plate theory applied to delamination in composites. J. Mech. Phys. Solids 36 689–718.MathSciNetADSCrossRefzbMATHGoogle Scholar
  17. 17.
    Suo, Z. and Hutchinson, J. W. (1990) Interface crack between two elastic layers. Int. J. Fracture 43 1–18.CrossRefGoogle Scholar
  18. 18.
    Thompson, J. M. T. and Hunt, G. W. (1973) A general theory of elastic stability. John Wiley & Sons, London.zbMATHGoogle Scholar
  19. 19.
    Timoshenko, S. P. and Gere, J. M. (1963) Theory of elastic stability. McGraw-Hill, Auckland.Google Scholar
  20. 20.
    Timoshenko, S. P. and Woinowsky-Krieger, S. (1970) Theory of plates and shells. McGraw-Hill, Auckland.Google Scholar
  21. 21.
    Yin, W.-L. (1985) Axisymmetric buckling and growth of a circular delamination in a compressed laminate. Int. I. Solids Structures 21 503–514.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Paolo Bisegna
    • 1
  • Franco Maceri
    • 1
  1. 1.Department of Civil EngineeringUniversity of Rome “Tor Vergata”RomeItaly

Personalised recommendations