Skip to main content

Simulation of Shock Wave-Turbulent Boundary Layer Interactions Using the Reynolds-Averaged Navier-Stokes Equations

  • Chapter
Book cover Modeling Complex Turbulent Flows

Part of the book series: ICASE/LaRC Interdisciplinary Series in Science and Engineering ((ICAS,volume 7))

Abstract

The paper examines the capability for numerical simulation of three-dimensional shock wave turbulent boundary layer interactions using the Reynolds-averaged Navier-Stokes equations. Two configurations are considered, namely, the single and double fin interactions. Numerical simulations were performed by an international group of researchers as part of an AGARD-sponsored study of capabilities for simulation of high speed flight. A broad range of turbulence models were employed including zero-, one-, two-equation and full Reynolds stress equation models. The paper presents a comparison of the numerical simulations with experiment and summarizes the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexopoulos G., and Hassan, H. (1997) Computation of Crossing Shock Flows Using the k-enstrophy Turbulence Model, AIAA Paper No. 97–0206.

    Google Scholar 

  • Alvi F., and Settles, G. (1991), Physical Model of the Swept Shock / Boundary Layer Interaction Flowfield, AIAA Journal, Vol. 30, pp. 2252–2258.

    Article  ADS  Google Scholar 

  • Baldwin B., and Lomax, H. (1978), Thin Layer Approximation and Algebraic Model Separated Flows, AIAA Paper 78–257.

    Google Scholar 

  • Becht C., and Knight, D. (1995), A Simple Low Reynolds Number Modification for the Compressible k — ∊ Model. Part I. Boundary Layer Flows, AIAA Paper 95–2218.

    Google Scholar 

  • Chien, K.-Y. (1982), Predictions of Channel and Boundary Layer Flows with a Low Reynolds Number Turbulence Model, AIAA Journal, Vol. 20, pp. 33–38.

    Article  ADS  MATH  Google Scholar 

  • Courant R., and Friedrichs, K. (1948), Supersonic Flow and Shock Waves, Springer-Verlag, New York.

    MATH  Google Scholar 

  • Degrez G., ed. (1993) AGARD Special Course on Shock-Wave/Turbulent Boundary-Layer Interactions in Supersonic and Hypersonic Flow, AGARD Report 792, Advisory Group for Aerospace Research and Development.

    Google Scholar 

  • Delery J., and Marvin, J. (1986), Shock-Wave Boundary-Layer Interactions, AGARDograph No. 280.

    Google Scholar 

  • Delery J., and Panaras, A. (1996), Shock-Wave Boundary-Layer Interactions in Hih Mach Number Flows, AGARD AR-319, Advisory Group for Aerospace Research and Development, Vol. 1.

    Google Scholar 

  • Edwards J., and Chandra, S. (1996), Comparison of Eddy Viscosity-Transport Turbulence Models for Three-Dimensional, Shock-Separated Flowfields, AIAA Journal, Vol. 34, pp. 756–763.

    Article  ADS  Google Scholar 

  • Gaitonde D., Shang J., Visbal, M. (1995), Structure of a Double-Fin Interaction at High Speed, AIAA Journal Vol. 33, pp. 193–200.

    Article  ADS  Google Scholar 

  • Garrison T., Settles G., Narayanswami N., and Knight, D. (1993), Structure of Crossing-Shock Wave/Turbulent Boundary Layer Interactions, AIAA Journal, Vol. 31, pp. 2204–2211.

    Article  ADS  Google Scholar 

  • Gnedin, M. (1996), Numerical Simulation of 3-D Shock Wave Turbulent Boundary Layer Interaction Using a Two Equation Model of Turbulence, PhD Thesis, Dept of Mech & Aero Engr, Rutgers University.

    Google Scholar 

  • Gnedin M., Knight D., Zheltovodov A., Maksimov A., Shevchenko A., and Vorontsov, S. (1996), 3-D Crossing Shock Wave Turbulent Boundary Layer Interaction, AIAA Paper No. 96–2001.

    Google Scholar 

  • Greene, J. E. (1970), Interactions between Shock Waves and Turbulent Boundary Layers, Progress in Aerospace Science, Pergammon Press, Vol. 11, pp. 235–340.

    Article  MathSciNet  ADS  Google Scholar 

  • Inger, G. (1985), Theoretical and Experimental Study of Nonadiabatic Transonic Shock Boundary-Layer Interaction, AIAA Journal, Vol. 23, pp. 1476–1482.

    Article  ADS  Google Scholar 

  • Inger, G. (1987), Spanwise Propagation of Upstream Influence in Conical Swept Shock / Boundary Layer Interactions, AIAA Journal, Vol. 25, pp. 287–293.

    Article  ADS  Google Scholar 

  • Jones W., and Launder, B. (1972), The Prediction of Laminarization with a Two-Equation Model of Turbulence, International Journal of Heat and Mass Transfer Vol. 15, pp. 301–304.

    Article  Google Scholar 

  • Kim K., Lee Y., Alvi F., Settles G., and Horstman, C. (1990), Laser Skin Friction Measurements and CFD Comparison of Weak-to-Strong Swept Shock / Boundary Layer Interactions, AIAA Paper No. 90–0378.

    Google Scholar 

  • Knight, D. (1993), Numerical Simulation of 3-D Shock Wave Turbulent Boundary Layer Interactions, in AGARD/VKI Special Course on Shock-Wave Boundary-Layer Interactions in Supersonic and Hypersonic Flows, Von Karman Institute for Fluid Dynamics, AGARD R-792, pp. 3-1 to 3-32.

    Google Scholar 

  • Knight D., Garrison T., Settles G., Zheltovodov A., Maksimov A., Shevchenko A., and Vorontsov, S. (1995), Asymmetric Crossing-Shock Wave / Turbulent Boundary Layer Interaction, AIAA Journal, Vol. 33, pp. 2241–2249.

    Article  ADS  Google Scholar 

  • Knight D., and Degrez, G. (1997), Shock Wave Boundary Layer Interactions in High Mach Number Flows-A Critical Survey of Current CFD Prediction Capabilities, AGARD AR-319, Advisory Group for Aerospace Research and Development, Vol. 2.

    Google Scholar 

  • Korkegi, R. (1971), Survey of Viscous Interactions Associated with High Mach Number Flight, AIAA Journal, Vol. 9, pp. 771–784.

    Article  ADS  Google Scholar 

  • Narayanswami N., Knight D., Bogdonoff S., and Horstman, C. (1992), Interaction Between Crossing Oblique Shocks and a Turbulent Boundary Layer, AIAA Journal, Vol. 30, pp. 1945–1952.

    Article  ADS  MATH  Google Scholar 

  • Panaras, A. (1996) Algebraic Turbulence Modelling for Swept Shock Wave / Turbulent Boundary Layer Interactions, Deutsche Forschungsanstalt für Luft-und Raumfahrt e.V., Report No. IB 223-296 A 22.

    Google Scholar 

  • Peake, D. and Tobak, M. (1980), Three-Dimensional Interactions and Vortical Flows with Emphasis on High Speed, NASA TM 81169.

    Google Scholar 

  • Settles G., and Dolling, D. (1986), Swept Shock Wave Boundary Layer Interactions, Tactical Missile Aerodynamics, AIAA, pp. 297–379.

    Google Scholar 

  • Settles G., and Dolling, D. (1990), Swept Shock / Boundary-Layer Interactions-Tutorial and Update, AIAA Paper 90–0375.

    Google Scholar 

  • Stewartson, K. (1981), Some Recent Studies in Triple-Deck Theory, in Numerical and Physical Aspects of Aerodynamic Flows, T. Cebeci, ed., Springer-Verlag, pp. 142.

    Google Scholar 

  • Stollery, J. (1989), AGARD Special Course on Three-Dimensional Supersonic and Hypersonic Flows Including Separation, Advisory Group for Aerospace Research and Development.

    Google Scholar 

  • Zha G., and Knight, D. (1996), Three-Dimensional Shock / Boundary-Layer Interaction Using Reynolds Stress Equation Turbulence Model, AIAA Journal, Vol. 34, pp.1313–1320.

    Article  ADS  MATH  Google Scholar 

  • Zheltovodov A., and Shilein, E. (1986), 3-D Swept Shock Waves / Turbulent Boundary Layer Interaction in Angles Configuration, Institute of Theoretical and Applied Mechanics, Academy of Sciences, Siberian Division, No. 34–86.

    Google Scholar 

  • Zheltovodov A., Maksimov A., Shevchenko, Vorontsov S., and Knight, D. (1994), Experimental Study and Computational Comparison of Crossing Shock Wave-Turbulent Boundary Layer Interaction, Proceedings of the International Conference on Methods of Aerophysical Research-Part 1, Russian Academy of Sciences, Siberian Division, pp. 221–230.

    Google Scholar 

  • Zheltovodov, A. (1996), Shock Waves / Turbulent Boundary Layer Interactions-Fundamental Studies and Applications, AIAA Paper No. 96–1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Knight, D.D. (1999). Simulation of Shock Wave-Turbulent Boundary Layer Interactions Using the Reynolds-Averaged Navier-Stokes Equations. In: Salas, M.D., Hefner, J.N., Sakell, L. (eds) Modeling Complex Turbulent Flows. ICASE/LaRC Interdisciplinary Series in Science and Engineering, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4724-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4724-8_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5986-2

  • Online ISBN: 978-94-011-4724-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics