Skip to main content

On the Calculation of Rotational Constants of Interstellar Molecules

  • Conference paper
  • 246 Accesses

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 241))

Abstract

Some fundamental concepts underlying the calculation of rotational constants of interstellar molecules are discussed. The case of the X-ogen line and the MgNC molecule are taken up as illustrative examples. These constitute relevant findings because they show the importance of resorting to sophisticated techniques as a means for the identification of interstellar lines.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1992, Gaussian 92, Programmer’s Reference and User’s Guide,(Gaussian, Inc. Pittsburgh, 1992); e-mail: info@gaussian.com.

    Google Scholar 

  2. Barsuhn, J., 1972, Astrophysical Letters, 12, 169.

    ADS  Google Scholar 

  3. Bauschlicher, C.W., Jr., Langhoff, S.R., & Partridge, H., 1985, Chem. Phys. Lett., 115, 124.

    Article  ADS  Google Scholar 

  4. Becke, A.D., 1988, Phys. Rev., A 38, 3098.

    Article  ADS  Google Scholar 

  5. Born, M. &, Oppenheimer, J.R., 1927, Ann. Physik, 84, 457

    MATH  Google Scholar 

  6. See also Born, M. & Huang, K., Dynamical Theory of Crystal Lattices” Oxford University Press, New York, 1954.

    MATH  Google Scholar 

  7. Buhl, D., and Snyder, L.E., 1970, Nature, 228, 267.

    Article  ADS  Google Scholar 

  8. Carter, S., Mills, I.M., & Handy, N.C., 1992, J. Chem. Phys., 97, 1606.

    Article  ADS  Google Scholar 

  9. Colle, R., & Salvetti, O., 1983, J. Chem. Phys., 79(3), 1404.

    Article  ADS  Google Scholar 

  10. Essen, H., 1977, Int. J. Quantum Chem., XII, 721.

    Article  Google Scholar 

  11. Fan, K., & Iwata, S., 1992, Chem. Phys. Lett., 195, 475.

    Article  ADS  Google Scholar 

  12. Foresman, J.B., & Frisch, A.E., 1993, Exploring Chemistry with Electronic Structure Methods, (Gaussian, Inc. Pittsburgh).

    Google Scholar 

  13. Frank-Kamenetskii, M.D., & Lukashin, A.V., 1976, Sov. Phys. Usp., 18, 391.

    Article  ADS  Google Scholar 

  14. Goscinski, O., & Palma, A., 1979, Int. J. Quantum Chem., XV, 197.

    Article  Google Scholar 

  15. Guélin, M., Cernicharo, J., Kahane, C, & Gómez-González, J, 1986, A&A 157, L17

    ADS  Google Scholar 

  16. Herbst, E., & Klemperer, W., 1974, Ap. J., 188, 255.

    Article  ADS  Google Scholar 

  17. Ishii, K., Hirano, T., Nagashima, V., Weis, B., & Yamashita, K., 1993, Ap. J., 410, and references therein.

    Google Scholar 

  18. Ishii, K., Hirano, T., Nagashima, V., Weis, B., & Yamashita, K., 1993, Ap. J., L43, and references therein.

    Google Scholar 

  19. Ishii, K., Hirano, T., Nagashima, U., Weis, B., & Yamashita, K., 1994, J. Mol. Structure (Teochem), 305, 117.

    Article  Google Scholar 

  20. Kagi, E., Kawaguchi, K., Takano, S., & Hirano, T., 1996, J. Chem. Phys., 104, 1263.

    Article  ADS  Google Scholar 

  21. Kawaguchi, K., Kagi, E., Hirano, T., Takano, S., & Saito, S., 1993, Ap. J., 406, L39.

    Article  ADS  Google Scholar 

  22. Kieninger, M., Irving, K., Rivas-Silva, F., Palma, A.,& Ventura, O., 1996, J. Mol. Struct. (THEOCHEM), in press.

    Google Scholar 

  23. Klemperer, W., 1970, Nature, 227, 1230.

    Article  ADS  Google Scholar 

  24. Kraemer, W.P., & Diercksen G.H.F., 1976, Ap. J., 205, L97.

    Article  ADS  Google Scholar 

  25. Largo-Cabrerizo, A., 1988, Chem. Phys. Lett., 147, 95.

    Article  ADS  Google Scholar 

  26. Largo-Cabrerizo, A., & Barrientos, C., 1989, Chem. Phys. Lett., 155, 550.

    Article  ADS  Google Scholar 

  27. Largo-Cabrerizo, A., & Flores, J.R., 1988, Chem. Phys. Lett., 147, 90.

    Article  ADS  Google Scholar 

  28. Lee, C, Yang, W., & Parr, R.G., 1988, Phys. Rev., B 37, 785.

    Article  ADS  Google Scholar 

  29. Levine, I.N., 1991, Quantum Chemistry, 4th edition (Prentice-Hall).

    Google Scholar 

  30. Lovas, F.J., 1974, Ap. J., 193, 265.

    Article  ADS  Google Scholar 

  31. Löwdin, P.O., 1955, Phys. Rev., 97, 1474.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Martin, J.M.L., Taylor, P.R., & Lee, T.J., 1993, J. Chem. Phys., 99, 286.

    Article  ADS  Google Scholar 

  33. Palma, A., Aquino, N., & Sandoval L., unpublished.

    Google Scholar 

  34. Parr, G.R., & Yang, W., 1989, Density-Functional Theory of Atoms and Molecules, (Oxford).

    Google Scholar 

  35. Pilar, F.R., 1990, Elementary Quantum Chemistry, 2nd edition (McGraw-Hill).

    Google Scholar 

  36. Roothaan, C.C.J., 1951, Rev. Mod. Phys. 23, 69.

    Article  ADS  MATH  Google Scholar 

  37. Snyder, L.E., & Buhl, D., 1971, Bull. A. A. S., 3, 251.

    ADS  Google Scholar 

  38. Snyder, L.E., Hollis, JM, Ulich, BL, Lovas, FJ, & Buhl, D, 1975, Bull. AAS 7, 497

    ADS  Google Scholar 

  39. Szabo A, & Ostlund, NS, 1989, Modern Quantum Chemistry, 1st ed. (Prentice-Hall)

    Google Scholar 

  40. Vosko, S.H., Wilk, L., & Nusair, M., 1980, Can. J. Phys., 58, 1200.

    Article  ADS  Google Scholar 

  41. See for example, Jones W. and March N. H., Theoretical Solid State Physics, Vol. 1 (Dover, 1973), p. 162.

    Google Scholar 

  42. Wahlgren, U., Liu, B., Pearson, PK, & Schaefer, HF, 1973, Nat. Phys. Sci., 246, 4

    Article  ADS  Google Scholar 

  43. Woods, R.C., Dixon, T.A., Saykally, R.J., & Szanto, P.G., 1975, Phys. Rev. Letters, 35, 1269.

    Article  ADS  Google Scholar 

  44. Woolley, R.G., 1978, J. Amer. Chem., 100, 1073.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Palma, A., Rivas-Silva, J.F., Flores-Riveros, A. (1999). On the Calculation of Rotational Constants of Interstellar Molecules. In: Wall, W.F., Carramiñana, A., Carrasco, L., Goldsmith, P.F. (eds) Millimeter-Wave Astronomy: Molecular Chemistry & Physics in Space. Astrophysics and Space Science Library, vol 241. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4714-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4714-9_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5983-1

  • Online ISBN: 978-94-011-4714-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics