Skip to main content

Part of the book series: NATO Science Series ((ASDT,volume 26))

Abstract

The critical initiation energy E. for detonation wave (DW) is used as the basic parameter in estimate of detonation hazards. At experimental defmition of Å. the blast explosion approximation is proposed to use. The similar technique is identically suitable both to the various initiators with of large distinctions in the spatial - temporary energy-release characteristics (flame igniters, electrical or laser spark, exploding wire, explosive, high-speed bullet…), and to various mixtures. The priority at theoretical Å. defmition is given up to «multi-point» initiation model based on DW transverse waves collisions as the micro-initiators of a detonation («hot» points). For various fuel-oxygen and fuel-air mixtures the dependence of critical initiation energy Å. on percentage of fuel in a mixture is determined, that allows to find out comparative detonation hazards of various combustible systems at plane, cylindrical and spherical initiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shelkin K.I., Troshin Ja.K. (1963) Gasdynamics of combustion (in Russian), USSR Academy Sci, loscow.

    Google Scholar 

  2. Vojtzehovsky B.V., Mitrofanov V.V., Topchian M.E.. (1963) Structure of detonation front in gases(in Russian), Siberian Branch USSR Academy Sci, Novosibirsk.

    Google Scholar 

  3. Fire-explosion hazard of substances both materials and means of their suppression(1990) (in Russian), reference book in 2 volumes, ed. by A.N. Baratov and A.Ja. Êîrolchenko Chemistry, Moscow.

    Google Scholar 

  4. Vasil’ev A.A. (1997) Gaseous fuels and detonation hazards, (N. Eisenreih eds.), Combustion and Detonation Proc. 28-th Fraunhofer ICT-Conference, Germany.

    Google Scholar 

  5. Bach G.G., Knystautas R., Lee J.H. (1970) Initiation criteria for diverging gaseous detonation, I3-th Symp. (International) on Combust. pp.1097–1110.

    Google Scholar 

  6. Vasil’ev À.À. (1983) Research of critical initiation of a gas detonation(in Russian), Phys. Comb. Expl. 19, 1 1. pp.121–131.

    Google Scholar 

  7. Korobejnikov V.P. (1973) Tasks of the theory of point explosion in gases (in Russian), Science, Moscow.

    Google Scholar 

  8. Vasil’ev A.À., Zhdan S.À. (1981) Parameters of a shock wave at explosion of a cylindrical charge in air (in Russian), Phys. Comb. Expl. 17, 1 6. pp.99–105.

    Google Scholar 

  9. Hariton Ju.B. (1947) About detonability of explosives (in Russian), in “Voprosi teorii vzrivchatih veshestv’. Moscow-Leningrad. Izd. AN USSR. -Vip.l. pp.7–28.

    Google Scholar 

  10. Vasil’ev A.A., Zak D.V. (1986) Detonation in gaseous jet (in Russian), Phys.Comb.Expl. 22,4. pp.82–88

    Google Scholar 

  11. Levin V.À., iàrkov V.V. (1975) Occurrence of a detonation at concentrated energy inpul(in Russian), Phys. Comb. Expl.. 11, 1 4. pp.623–633.

    Google Scholar 

  12. Uljanitsky V.Ju. (1980) The closed model of direct initiation of a gas detonation in view of instability. II. Undot initiation (in Russian), Phys. Comb. Expl. 16, 1 4. pp.79–89.

    Google Scholar 

  13. Matsui H., Lee J.H. (1976) Influence of electrode geometry and spacing on the critical energy for direct initiation of spherical gaseous detonations, Combust. Flame. 27. pp.217–220.

    Article  Google Scholar 

  14. Zeldovitch Ja.B., Êîgarko S.i., Simonov N.N. (1956) An experimental research of a spherical gas detonation (in Russian), J. Tech. Phys. 26, 1 8. pp.1744–1768.

    Google Scholar 

  15. Ìitrofanov V.V., Soloukhin R.I. (1964) About d faction of amultii ront detonation wave (in Russian), Repp. USSR Academy Sci.. 159, 15. pp.1003–1006.

    Google Scholar 

  16. Vasil’ev À.À. (1989) Spatial excitation of amultifront detonation (in Russian),Phys. Comb. Expl.. 25, 1 1. pp.113–119.

    Google Scholar 

  17. Vasil’ev A.À. (1995). Near-critical modes of a gas detonation (in Russian), Novosibirsk.

    Google Scholar 

  18. Vasil’ev À.À., Demchenko V.V. (1993) Geometry of the initiator and explosion safety of combustible mixtures (in Russian), Chem. Phys. 12, 1 5. pp.709–711.

    Google Scholar 

  19. Iljushin À.À. (1956) The law of plane sections in aerodynamics of large supersonic speeds(in Russian), Appl. Math. Mech. 20. pp.6–12.

    Google Scholar 

  20. Chernij G.G. (1959) Current of gas with large supersonic speed (in Russian) loscow.

    Google Scholar 

  21. Vasil’ev À.À., Kulakov B.I., iitrofanov V.V., Silvestrov V.V., Oitov V.I. (1994) Initiation of explosive gaseous mixtures by a high-speed body (in Russian), Izvestija RAS. 338,1 2. pp.188–190.

    Google Scholar 

  22. Vasiljev A.A. (1994) Initiation of gaseous detonation by a high speed body, Shock Waves3, 1 4. pp.321–326.

    Article  Google Scholar 

  23. Vasil’ev A.A. (1997) Modeling of detonation combustion of gas mixtures using a high-velocity projectile (in Russian), Phys. Comb. Expl. 33, 1 5. pp.85–102.

    Google Scholar 

  24. Kailasanath K., Oran E.S., Boris J.PP., Young T.R. (1985) Determination of detonation cell size and the role of transverse waves in two-dimensional detonations, Comb. Flame. 61. pp.199–209.

    Article  CAS  Google Scholar 

  25. Westbrook C.K., Urtiew PP.A. (1982) Chemical kinetic prediction of critical parameters in gaseous detonations, 19-th Sympp. (International) on Combust. pp.615–623.

    Google Scholar 

  26. Gelfand B.E., Frolov S.M., Nettleton M.A. (1991) Gaseous detonations - a selective review, Prog. Energy Combust. Science. 17. pp.327–371.

    Article  CAS  Google Scholar 

  27. Vasiljev A.A., Nikolaev Ju. A. (1978) Closed theoretical model of a detonation cell,Acta Astr. 5. pp.983–996.

    Article  Google Scholar 

  28. Levin V.A., Markov V.V., Osinkin S.F. (1995) Initiation of detonation in hydrogen-air mixture by spherical TNT charge (in Russian), Phys. Comb. Expl 31, 2. pp.91–95.

    CAS  Google Scholar 

  29. Vasil’ev À.À. (1978) An estimation of initiation energy of a cylindrical detonation (in Russian),Phys. Comb. Expl. 14, 1 3. pp.154–155.

    Google Scholar 

  30. Vasil’ev À.À., Nikolaev Ju.À., Uljanitsky V.Ju (1979). Critical energy of initiation of a multifront detonation (in Russian), Phys. Comb. Expl. 15, 1 6. pp.94–104.

    Google Scholar 

  31. Vasil’ev À.À., Grigorjev V.V. (1980) Critical conditions of distribution of a gas detonation in sharpdivergented channels (in Russian), Phys. Comb. Expl.. 16, 1 5. pp.117–125.

    Google Scholar 

  32. Ìitrofanov V.V. (1983) Some critical phenomena in detonations connected to losses of a pulse(in Russian), Phys. Comb. Expl.. 19, 1 4. pp.169–174.

    Google Scholar 

  33. Zhdan S.À., Ìitrofanov V.V. (1985) Simply model for account of energy of initiation of a heterogeneous and gas detonation (in Russian), Phys. Comb. Expl.. 21, 1 6. pp.98–103.

    Google Scholar 

  34. Benedick W.B., Guirao C.M., Knystautas R., Lee J.H. (1986) Critical charge for direct initiation of detonation in gaseous fuel-air mixtures, in Bowen, Leyer and Soloukhin (eds) “Dynamics of Explosion” v.106 of “Progress in Astronautics and Aeronautics”, N.Y., pp.181–202.

    Google Scholar 

  35. Vasiljev A.A. (1991) The limits of stationary propagation of gaseous detonation, in Borisov A. (eds), Dynamic structure of detonation in gaseous and dispersed media, v.5 of “Fluid Mechanics and its applications”, Kluwer Academic Publishers, Dordrecht-Boston-London, pp.27–49.

    Chapter  Google Scholar 

  36. Vasil’ev A.A., Valishev A.I., Vasil’ev V.A., Panfilova L.V., Topchian M.E. (1997) Parameters of detonation waves at higher pressure and temperature (in Russian), Chemical Physics. 16,11. pp.114–118.

    Google Scholar 

  37. Vasil’ev A.A. (1997) The experimental methods and calculating models for definition of the critical initiation energy of multifront detonation wave, Proc. 16th ICDERS. University of Mining and Metallurgy, AGH, Cracow, Poland. pp.152–155.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vasil’ev, À.À. (1999). Detonation Hazards of Gaseous Mixtures. In: Zarko, V.E., Weiser, V., Eisenreich, N., Vasil’ev, A.A. (eds) Prevention of Hazardous Fires and Explosions. NATO Science Series, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4712-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4712-5_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5769-8

  • Online ISBN: 978-94-011-4712-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics