Skip to main content

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 105))

  • 428 Accesses

Abstract

Entropic arguments are shown to play a central role in the foundations of quantum theory. We prove that probabilities are given by the modulus squared of wave functions, and that the time evolution of states is linear and also unitary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. E. Shannon, Bell Systems Tech. Jour. 27, 379, 623 (1948), reprinted in C. E. Shannon and W. Weaver “The Mathematical Theory of Communication” (Univ. of Illinois Press, Urbana, 1949); see also

    Google Scholar 

  2. “E. T. Jaynes: Papers on Probability, Statistics and Statistical Physics,” edited by R. D. Rosenkrantz (Reidel, Dordrecht, 1983).

    Google Scholar 

  3. A. Caticha, Phys, Lett. A244, 13 (1998) (quant-ph/9803086).

    Google Scholar 

  4. A. Caticha, Phys. Rev. A57, 1572 (1998) (quant-ph/9804012).

    Google Scholar 

  5. P. A. M. Dirac, “The Principles of Quantum Mechanics,” (Oxford, 1958).

    Google Scholar 

  6. R. P. Feynman, Rev. Mod. Phys. 20, 267 (1948); R. P. Feynman and A. R. Hibbs, “Quantum Mechanics and Path Integrals,” (McGraw-Hill, 1965).

    Google Scholar 

  7. H. Stapp, Am. J. Phys. 40, 1098 (1972).

    Article  Google Scholar 

  8. The fact that Born’s postulate is actually a theorem has been independently discovered several times: A. M. Gleason, J. Rat. Mech. Anal. 6, 885 (1957); D. Finkelstein, Trans. NY Acad. Sci. 25, 621 (1963): J, B. Hartle, Am. J. Phys. 36, 704 (1968); N. Graham, in “The Many-Worlds Interpretation of Quantum Mechanics” edited by B. S. DeWitt and N. Graham (Princeton, 1973). The limit N→ ∞ where Nis the number of replicas of the system is further discussed in E. Farhi, J. Goldstone and S. Gutman, Ann. Phys. 192, 368 (1989) and in ref. [20]

    Google Scholar 

  9. R. T. Cox, Am. J. Phys. 14, 1 (1946).

    Article  MATH  Google Scholar 

  10. S. Weinberg, Phys. Rev. Lett. 63, 1115 (1989).

    Article  Google Scholar 

  11. R. Blankenbecler and M. H. Partovi, Phys. Rev. Lett. 54, 373(1985).

    Article  MathSciNet  Google Scholar 

  12. E. T. Jaynes, Phys. Rev. 108, 171 (1957), reprinted in [2].

    Google Scholar 

  13. Y. Tikochinsky, Int. J. Theor. Phys. 27, 543 (1988) and J. Math. Phys. (1988).

    Google Scholar 

  14. See for example: L. de Broglie “Non-Linear Wave Mechanics-A Causal Interpretation,” (Elsevier, Amsterdam, 1950); P. Pearle, Phys. Rev. D13, 857 (1976); I. Bialynicki-Birula and J. Mycielski, Ann. Phys. (NY) 100, 62 (1976); A. Shimony, Phys. Rev. A20, 394 (1979); S. Weinberg, Phys. Rev. Let. 62, 485 (1989), and Ann. Phys. (NY) 194, 336 (1989); N. Gisin, Helv. Phys. Acta 62, 363 (1989) and Phys. Lett. 143, 1 (1990); J. Polchinski, Phys. Rev. Lett. 66, 397 (1991); H. Scherer and P. Busch, Phys. Rev. 47, 1647 (1993).

    Google Scholar 

  15. C. G. Shull, D. K. Atwood, J. Arthur, and M. A. Horne, Phys. Rev. Let. 44, 765 (1980); R. Gahler, A. G. Klein, and A. Zeilinger, Phys. Rev. A23, 1611 (1981); J. J. Bollinger et al., Phys. Rev. Let. 63, 1031 (1989).

    Google Scholar 

  16. E. T. Jaynes, in “Statistical Physics”, Vol. 3, K. W. Ford, ed., p. 182 (Benjamin, NY 1963) and IEEE Trans. Syst. Sci. Cybern. Vol. SSC-4, 227 (1968), both reprinted in [2]; J. E. Shore and R. W. Johnson, IEEE Trans. Inf. Th. Vol. IT-26, 26 (1980).

    Google Scholar 

  17. E. T. Jaynes, Am. J. Phys. 33, 391 (1965).

    Google Scholar 

  18. A. Caticha, to be submitted to Phys. Rev. A.

    Google Scholar 

  19. See e.g., D. Finkelstein, J. M. Jauch, S. Schiminovich and D. Speiser, J. Math. Phys. 3, 207 (1962) and 4, 788 (1963); S. L. Adler, Phys. Rev. Lett. 55, 783 (1985) and Comm. Math. Phys. 104, 611 (1986); D. Hestenes, “Spacetime Algebra” (Gordon and Breach, 1966); W. E. Baylis (ed.) “Clifford (Geometrie) Algebras” (Birkhäuser, Boston, 1996).

    Google Scholar 

  20. C. C. Rodriguez, “Are we cruising hypothesis space?” and “Unreal probabilities partial truth with Clifford numbers”, both in these Proceedings.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Caticha, A. (1999). Probability and Entropy in Quantum Theory. In: von der Linden, W., Dose, V., Fischer, R., Preuss, R. (eds) Maximum Entropy and Bayesian Methods Garching, Germany 1998. Fundamental Theories of Physics, vol 105. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4710-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4710-1_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5982-4

  • Online ISBN: 978-94-011-4710-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics