Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 533))

Abstract

If (M 2,g) is a surface with Riemannian metric, then a family of immersed curves C t | 0 ≤ t < T on M 2 evolves by Curve Shortening if where K g is the geodesic curvature, and v is a unit normal to the curve. Since K g v can be written as where s is arclength along C, (1) is essentially a parabolic equation, i.e. a nonlinear heat equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.B. Angenent, The zeroset of a solution of a parabolic equation, J.reine u.angewandte Mathematik, 390 (1988) 79–96.

    Google Scholar 

  2. S.B. Angenent, Parabolic Equations for Curves on Surfaces II, Ann of Math. 133 (1991), 171–215.

    Article  MathSciNet  Google Scholar 

  3. V.I. Arnol’d, Topological Invariants of Plane Curves and Caustics, A.M.S. University Lecture Series 5 (1994).

    Google Scholar 

  4. V.I. Arnol’d, On the number of flattening points of space curves, Report No. 1, 1994/1995 Institut Mittag-Leffler, to appear in Advances in Soviet Mathematics (1995).

    Google Scholar 

  5. M. Grayson & R.S. Hamilton, The heat equation shrinking plane convex curves, J. of Diff. Geom., 23 (1986) 69–96.

    Google Scholar 

  6. M.A. Grayson, Shortening embedded curves, Annals of Math., 129 (1989) 71–111.

    Article  Google Scholar 

  7. C. Sturm, Mémoire sur une classe d’équations à différences partielles, J.Math.Pures at Appl. 1 (1836) 373–444.

    Google Scholar 

  8. G. Sapiro & A. Tannenbaum, On Affine plane Curve Shortening, J.Funct.Anal. 119 (1994) 79–120.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Angenent, S. (1999). Inflection Points, Extatic Points and Curve Shortening. In: Simó, C. (eds) Hamiltonian Systems with Three or More Degrees of Freedom. NATO ASI Series, vol 533. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4673-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4673-9_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5968-8

  • Online ISBN: 978-94-011-4673-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics