A Protocol for Deriving Values for ΔfusHm(298.15 K) and ΔvapHm(298,15 K). Applications in Obtaining ΔsubHm (298.15 K)

  • James Chickos
  • Gary Nichols
  • Joe Wilson
  • Jennifer Orf
  • Paul Webb
  • Jin Wang
Part of the NATO Science Series book series (ASIC, volume 535)


An indirect method for obtaining sublimation enthalpies is described. The method consists of combining experimental or estimated fusion enthalpies adjusted to 298.15 K with either vaporization enthalpies measured at elevated temperatures and adjusted for temperature or obtained directly at 298.15 K by correlation gas chromatography. Some relationships used to adjust phase change enthalpies with temperature are discussed and their use is demonstrated on a series of compounds. These equations are used to adjust the fusion enthalpies of hydrocarbons to 298.15 K. The corresponding fusion entropies at 298.15 K are parameterized using group additivity relationships and the resulting group values are used to estimate fusion entropies and enthalpies at 298.15 K. The techniques discussed are applied to the evaluation of the sublimation enthalpies of perylene and coronene.


Heat Capacity Polynuclear Aromatic Hydrocarbon Temperature Adjustment Trans Stilbene Vaporization Enthalpy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pedley, J. B., Naylor R. D., and Kirby, S. P. (1986) Thermo chemical Data of Organic Compounds, 2nd Edit. Chapman and Hall, N.Y.CrossRefGoogle Scholar
  2. 2.
    Grain, C.F. (1990) Vapor Pressure in W. J. Lyman, W. F. Reehl, D. H. Rosenblatt, (eds.), Handbook of Chemical Property Estimation Methods, Amer. Chem. Soc., Washington D. C., Chapter 14.Google Scholar
  3. 3.
    Gavezzotti, A., Filippini, G. (1994) Non-Covalent Interactions in Organic Crystals, and the Calibration of Empirical Force Fields, Computational Approaches in Supramolecular Chemistry, Kluwer Academic Publishers, Dordrecht, pp 51–62.CrossRefGoogle Scholar
  4. 4.
    Chickos J. S. “Heats of Sublimation” Chapter 2, in Molecular Structure and Energetics, Physical Measurements, Liebman J. F. and Greenberg A.; Editors; VCH Publishers, Inc; New York, 1987; Vol. 2.Google Scholar
  5. 5.
    Chickos, J. S. (1998) A Protocol for Correcting Experimental Fusion Enthalpies to 298.15 K and Its Application in Indirect Measurements of Sublimation Enthalpy at 298.15 K, Thermochim. Acta 313, 19–26.CrossRefGoogle Scholar
  6. 6.
    Chickos, J. S., Hesse, D., Hosseine, S., Nichols, G., and Paul Webb (1998) Sublimation Enthalpies at 298.15 K Using Combined Correlation Gas Chromatography-Differential Scanning Calorimetry Measurements, Thermochim. Acta 313, 101–110.CrossRefGoogle Scholar
  7. 7.
    Chickos, J. S. and Wilson, J. (1997) Vaporization Enthalpies at 298.15 of the n-Aikanes from C21 to C28 and C30, J. Chem. Eng. Data 42, 190–197.CrossRefGoogle Scholar
  8. 8.
    Schulman, J. M.; Disch, R. L. (1997) Thermal and Magnetic Properties of Coronene and Related Molecules, J. Phys. Chem. A101, 9176.CrossRefGoogle Scholar
  9. 9.
    Domalski, E. S.; Hearing, E. D. (1988) Estimation of the thermodynamic properties of hydrocarbons at 298.15K”, J. Phys. Chem. Ref. Data, 17, 1637–1660.CrossRefGoogle Scholar
  10. 10.
    Benson, S. W. (1976) Thermochemical Kinetics, 2 nd Ed. John Wiley and SonsGoogle Scholar
  11. 11.
    Chickos, J. S., Hesse, D. G., Liebman, J. F. (1993) A Group Additivity Approach for the Estimation of Heat Capacities of Organic Liquids and Solids at 298 K, Struct. Chem. 4, 261–269.CrossRefGoogle Scholar
  12. 12.
    Birkett, J. D. (1990) Heat Capacity in W.J. Lyman, W. F. Reehl, D. H. Rosenblatt (eds.), Handbook of Chemical Property Estimation Methods, Amer. Chem. Soc., Washington D. C.Google Scholar
  13. 13.
    Sidgwick, N. V. (1933) The Covalent Link in Chemistry, Cornell Univerity Press, Ithaca, N. Y.Google Scholar
  14. 14.
    Shaw, R. (1969) Heat Capacity (Cp) of Organic Liquids and Vapors at 25C, J. Chem. Eng. Data 14, 461.CrossRefGoogle Scholar
  15. 15.
    Chickos, J. S., Hosseini, S., Hesse, D. G., Liebman, J. F. (1993) Heat Capacity Corrections to a Standard State: A Comparison of New and Some Literature Methods for Organic Liquids and Solids, Struct. Chem. 4, 271–277.CrossRefGoogle Scholar
  16. 16.
    J. B. Pedley, University of Sussex, personal communication as cited by Burskinshaw, P. M., Mortimer, C. T. (1984) Enthalpies of Sublimation of Transition Metal Complexes, J. Chem. Soc, Dalton Trans. 75.Google Scholar
  17. 17.
    Melia, T. P., Merrifield, R. J. (1970) Thermal Properties of Transition Metal Compounds. Heat Capacity, Entropy, Enthalpy, Free Energy and Heat of Fusion of Scandium (III), Vanadium (III), Manganese (III), Iron (III), and Cobalt (III) and the Vapour Pressure of Tris(acetylacetonato)iron (III) Inorg. Nucl. Chem. 32, 2573.CrossRefGoogle Scholar
  18. 18.
    DeKruif, C. G., Voogd, J., Offringa, J. C. A. J. (1979) Enthalpies of sublimation and vapour pressures of 14 amino acids and peptides, J. Chem. Thermodyn. 11, 651–656.CrossRefGoogle Scholar
  19. 19.
    Majer, V., Svoboda, V. (1985) Enthalpies of Vaporization of Organic Compounds, A Critical Review and Data Compilation, IUPAC Chem. Series No. 32, Blackwell Scientific Publications, London, UK.Google Scholar
  20. 20.
    Hansen, P.C.; Eckert, C. A. (1986) An Improved Transpiration Method for the Measurement of Very Low Vapor Pressures, J. Chem. Eng. Data, 31, 1–3.CrossRefGoogle Scholar
  21. 21.
    Adedeji, F. A.; Brown, L. S.; Connor, J. A.; Leung, M. L. Paz-Andrade I. M. Skinner, H. A. (1975) Thermochemistry of arene chromium tricarbonyls and the strengths of arene-chromium bonds. J. Organomet. Chem. 97, 221–228.CrossRefGoogle Scholar
  22. 22.
    Nass, K., Lenoir, D., and Kettrup, A., (1995) Calculation of the Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons by an Incremental Procedure, Angew. Chem. Int. Ed. Engl. 34, 1735.CrossRefGoogle Scholar
  23. 23.
    Rordorf, B. F. (1986) Thermal Properties of Dioxins, Furans, and Related Compounds, Chemosphere 15, 1325.CrossRefGoogle Scholar
  24. 24.
    Bender, R., Bieling, V., and Maurer, G. (1983) The Vapour Pressures of Solids: Anthracene, Hydroquinone, and Resorcinol”, J. Chem. Thermodynamics 15, 585.CrossRefGoogle Scholar
  25. 25.
    Sonnefeld, W. J., Zoller, W. H., May, W. E. (1983) Dynamic Coupled-Column Liquid Chromatographic Determination of Ambient Temperature Vapor Pressures of Polynuclear Aromatic Hydrocarbons, Anal. Chem. 55, 275.CrossRefGoogle Scholar
  26. 26.
    De Kruif, C.G. (1980) Enthalpies of Sublimation and Vapour Pressures of 11 Polycyclic Hydrocarbons, J. Chem. Thermodynamics 12, 243.CrossRefGoogle Scholar
  27. 27.
    Dygdala, R. S., Stefanski, K., Wolnikowski, J. (1977) Optical Determination of Anthracene Vapour Concentration, Bulletin De L’Academie Polonaise Des Sciences 15, 439–447.Google Scholar
  28. 28.
    Taylor, J. W.; Crookes, R, J. (1974) Vapour Pressure and Enthalpy of Sublimation of l,3,5,7-tetranitro-l,3,5,7-tetra-azacyclooctane (HMX) J. Chem. Soc. Faraday I 723–729.Google Scholar
  29. 29.
    McEachern, D. M.; Sandoval, O. (1973) Measuring vapour pressures and heats of sublimation of organic compounds, J. Phys. E 6, 155–161.CrossRefGoogle Scholar
  30. 30.
    Malaspina, L.; Gigli, R.; Bardi, G. (1973) Microcalorimetric determination of the enthalpy of sublimation of benzoic acid and anthracene, J. Chem. Phys. 59, 387.CrossRefGoogle Scholar
  31. 31.
    Kelley, D.; Rice, F. (1964) The Vapor Pressures of Some Polyaromatic Hydrocarbons, J. Phys. Chem. 68, 3794.CrossRefGoogle Scholar
  32. 32.
    Klochov, V. (1958) Saturated Vapor Pressure of Some Aromatic Compounds Zh. Fizz. Chim. 32, 1177.Google Scholar
  33. 33.
    Hoyer, H.; Peperle, W. Z.(1958) Dampfdruckmessungen an organischen Substanzen und ihre Sublimationswärmen, Electrochemie 62, 61.Google Scholar
  34. 34.
    Stevens, B. (1953) Vapour Pressures and the Heats of Sublimation of Anthracene and of 9, 10-Diphenylanthracene, J. Chem. Soc. 2973.Google Scholar
  35. 35.
    Bradley, R. S. Cleasby, T. G. (1953) The Vapour Pressure and Lattice Energy of Some Aromatic Ring Compounds,” J. Chem. Soc. 1690.Google Scholar
  36. 36.
    Domalski, E. S.; Hearing, E. D. (1996) Heat Capacities and Entropies in the Condensed Phase Vol. III J. Phys. Chem. Ref. Data 25, 1–547.CrossRefGoogle Scholar
  37. 37.
    Stephenson, R. M.; Malonowski, S. (1987) Handbook of the Thermodynamics of Organic Compounds, Elsevier, New York. Vaporization enthalpies were calculated from vapor pressures generated from the Antoine Constants reported in the text over a 30 K range followed by a Clausius Clapeyron treatment of the resulting data.CrossRefGoogle Scholar
  38. 38.
    Nelson, O. A.; Senseman, C. E. (1922) Vapor Pressure Determinations on Naphthalene, Anthracene, Phenanthrene, and Anthraquinone between Their Melting and Boining Points, Ind. Eng. Chem. 14, 58–62.CrossRefGoogle Scholar
  39. 39.
    Chirico, R. D.; Knipmeyer, A.; Nguyen, A.; Steele, W. V. (1989) The Thermodynamic Properties of Biphenyl J. Chem.Thermodyn. 21, 1307.CrossRefGoogle Scholar
  40. 40.
    Cox, J. D. (1974) Recommended Reference Materials, Pure Appl Chem. 40, 424.Google Scholar
  41. 41.
    DeKruif, C. G.; Van Miltenburg, J. C.; Blok, J. G. (1983) Molar heat capacities and vapour pressures of solid and liquid benzophenone, J. Chem. Thermodyn. 15, 129–136.CrossRefGoogle Scholar
  42. 42.
    Chickos, J. S.; Sabbah, R.; Hosseini, S.; Liebman, J. F. (1996) The Sublimation Enthalpy of Dimethyl Oxalate, Struct. Chem. 7, 391–395.CrossRefGoogle Scholar
  43. 43.
    Acree, Jr.; W. E. (1991) Thermodynamic properties of organic compounds: enthalpy of fusion and melting point compilation, Thermochim. Acta 189, 37–56.CrossRefGoogle Scholar
  44. 44.
    Chickos, J. S.; Braton, C. M.; Hesse, D. G.; Liebman, J. F. (1991) Estimating Entropies and Enthalpies of Fusion, J. Org. Chem. 56, 927–938.CrossRefGoogle Scholar
  45. 45.
    DeKruif, C. G.; Kuipers, T.; Van Miltenburg, J. C; Schaake, R. C. F.; Stevens, G. (1981) The vapour pressure of solid and liquid naphthalene, J. Chem. Thermodyn. 13, 1081–1086.CrossRefGoogle Scholar
  46. 46.
    Chickos, J. S., Acree, Jr. W., Liebman, J. F. (1998) Estimating Phase Change Enthalpies and Entropies in Computational Thermochemistry: Prediction and Estimation of Molecular Thermodynamics; K. K Irikura, D. J. Frurip (eds.), ACS Symp. Ser. 677; ACS, Washington DC, pp 63–91.Google Scholar
  47. 47.
    Piacente, V.; Ferro, D.; Della Gatta, G. (1993) Vaporization enthalpies of a series of α, ω-alkanediols from vapour pressure measurements, Thermochim. Acta 223, 65–73.CrossRefGoogle Scholar
  48. 48.
    Knauth, P.; Sabbah, R. (1990) Sublimation enthalpies of 1,ω-alkanediols,” Can. J. Chem. 68, 731.CrossRefGoogle Scholar
  49. 49.
    Finke, H. L.; Messerly, J. F.; Lee, S. H.; Osborn, A. G.; Douslin, D. R. (1977) Comprehensive thermodynamic studies of seven aromatic hydrocarbons, J. Chem. Thermodyn. 9, 937.CrossRefGoogle Scholar
  50. 50.
    Parsons, G. H.; Rochester, C. H.; Wood, C. E. C. (1971) Effects of 4-Substitution on the Thermodynamics of Hydration of Phenol and the Phenoxide Anion, J. Chem. Soc. B 533.Google Scholar
  51. 51.
    Wong, W.-K.; Westrum, Jr., E. F. (1971) Thermodynamics of polynuclear aromatic molecules. 1. Heat capacities and enthalpies of fusion of pyrene, fluoranthene, and triphenylene, J. Chem. Thermodyn. 3, 105–124.CrossRefGoogle Scholar
  52. 52.
    Sasse, K.; Jose, J.; Merlin, J.-C. (1988) A Static Apparatus for Measurement of Low Vapor Pressures. Experimental Results on High Molecular Weight Hydrocarbons, Fluid Phase Equilibria 42, 287–304.CrossRefGoogle Scholar
  53. 53.
    Sabbah, R., An, X. W. (1991) Etude Thermodynamique des Chlorobenzenes, Thermochim. Acta 179, 81–88.CrossRefGoogle Scholar
  54. 54.
    Malaspina, L.; Bardi, G.; Gigli, R. (1974) Simultaneous determination by Knudsen Effusion microcalorimetric technique of the vapor pressure and enthalpy of vaporization of pyrene and 1,3,5-triphenylbenzene, J. Chem. Thermodyn. 6, 1053–1064.CrossRefGoogle Scholar
  55. 55.
    Chickos, J. S.; Hosseini, S.; Hesse, D. G. (1995) Determination of vaporization enthalpies of simple organic molecules by correlations of changes in gas chromatographic net retention times, Thermochim. Acta 249, 41–62.CrossRefGoogle Scholar
  56. 56.
    De Kruif, C. G.; Blok, J. G. (1982) The vapor pressure of benzoic acid, J. Chem. Thermodyn. 14, 201–206.CrossRefGoogle Scholar
  57. 57.
    Drotloff, H.; Moller, M. (1987) On the phase Transitions of cycloalkanes. Thermochim. Acta 112, 57.CrossRefGoogle Scholar
  58. 58.
    van Kamp, H. (1957) Energetische Grootheden van Cyclanen, Doctoral Dissertation, Vrije Universiteit: Amsterdam, The Netherlands.Google Scholar
  59. 59.
    Chickos, J. S.; Hesse, D. G.; Panshin, S. Y.; Rogers, D. W.; Saunders, M.; Uffer, P. M.; Liebman, J. F. (1992) The Strain Energy of Cyclotetradecane Is Small, J.Org. Chem. 57, 1897–1899.CrossRefGoogle Scholar
  60. 60.
    Chickos, J. S.; Sabbah, R.; Hosseini, S.; Liebman, J. F. (1996) The Sublimation Enthalpy of Dimethyl Oxalate, Struct. Chem. 7, 391–395.CrossRefGoogle Scholar
  61. 61.
    Sabbah, R. (1987) IUPAC-Recommended Reference Materials for the Realization of Physicochemical Properties, Marsh, K. N. (Ed.) Blackwell Scientific Publications: Oxford UK.Google Scholar
  62. 62.
    Colomina, M.; Roux, M. V.; Turrion, C. (1974) Thermochemical properties of naphthalene compounds. I. Enthalpies of combustion and formation of the 1 and 2-naphthoic acids, J. Chem. Thermodyn. 6, 149.CrossRefGoogle Scholar
  63. 63.
    Kiyobayashi, T. (1995) Doctoral Thesis, Microcalorimetry Research Center, Faculty of Science, Osaka University, Toyonaka 560, Japan, 1996. Kiobayashi, T. Annual Report of the Microcalorimetry Center; 16, 58.Google Scholar
  64. 64.
    Herndon, W. C. (1995) Hydrocarbon Enthalpies of Formation and ab initio calculations, Chem. Phys. Lett.234, 82.CrossRefGoogle Scholar
  65. 65.
    Gigli, R.; Malaspina, L.; Bardi, G. (1973) Vapor pressure and sublimation enthalpy of perylene, Ann. Chim. (Rome) 63, 627; (1995) Chem. Abstr. 82, 77775g.Google Scholar
  66. 66.
    Hoyer, H.; Peperle, W. (1958) Dampfdruckmessungen an organischen Substanzen und ihre Sublimationwärmen, Z. Electrochem. 62, 61–66.Google Scholar
  67. 67.
    Inokuchi, H.; Shiba, S. Handa, T.; Akamatu, H. (1952) Heats of Sublimation of Condensed Polynuclear Aromatic Hydrocarbons, Bull. Chem. Soc. Jpn. 25, 299–302.CrossRefGoogle Scholar
  68. 68.
    Wakayama, N.; Inokuchi, H. (1967) Heats of Sublimation of Polycyclic Aromatic Hydrocarbons and Their Molecular Packings, Bull Chem. Soc. Jpn. 40, 2267–2271.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • James Chickos
    • 1
  • Gary Nichols
    • 1
  • Joe Wilson
    • 1
  • Jennifer Orf
    • 1
  • Paul Webb
    • 1
  • Jin Wang
    • 1
  1. 1.Department of ChemistryUniversity of Missouri-St. LouisSt. LouisUSA

Personalised recommendations