Methods and Applications
  • Clementina Teixeira
Part of the NATO Science Series book series (ASIC, volume 535)


Photocalorimetry is here considered as an extension of classical calorimetry for the study of light induced processes. The basic principles of this method are discussed. An overview of the main instruments and techniques used is presented. A few examples of applications to organic and inorganic reactions in solution are discussed.


Quantum Yield Light Guide Quartz Window Heat Flow Rate Bond Dissociation Enthalpy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Teixeira, C. and Wadsö, I. (1994) Solution photocalorimeters, Netsu Sokutei 21, 29–39.Google Scholar
  2. 3.
    Magee, J. L., DeWitt, T. W., Smith, E. C. and Daniels, F. (1939) A photocalorimeter. The quantum efficiency of photosynthesis in algae, J. Am. Chem. Soc. 61, 3529–3533.CrossRefGoogle Scholar
  3. 4.
    Magee, J. L. and Daniels, F. (1940) The heat of photobromination of the phenyl methanes and cinnamic acid, and the influence of oxygen, J. Am. Chem. Soc. 62, 2825–2833.CrossRefGoogle Scholar
  4. 5.
    Wadsö, I. (1995) Microcalorimetric techniques for investigation of living plant materials, Thermochimica Acta 250, 285–304.CrossRefGoogle Scholar
  5. 6.
    Johansson, P. and Wadsö, I. (1997) A photo-microcalorimetric system for studies of plant tissues, J. Biochem. Biophys. Met. 35, 103–114.CrossRefGoogle Scholar
  6. 7.
    Johansson, P. and Wadsö, I. (1998) Design and testing of an isothermal microcalorimetric reaction vessel, submitted.Google Scholar
  7. 8.
    Johansson, P. (1998) Towards More Specific Microcalorimetric Studies. with Special Emphasis on Biological Systems, PhD. Thesis, Division of Thermochemistry, Lund University, Sweden.Google Scholar
  8. 9.
    Johansson, P. (1998) Kinetic and thermodynamic experiments with a multifunctional microcalorimetric vessel, submitted.Google Scholar
  9. 10.
    Schaarschmidt, B. and Lamprecht, I. (1973) UV-irradiation and measuring of the optical density of microorganisms in a microcalorimeter, Experientia 29, 505–506.CrossRefGoogle Scholar
  10. 11.
    Schaarschmidt, B. and Lamprecht, I. (1986) Simultaneous measurements of heat production and optical density in oscillating reactions, Thermochim. Acta 105, 205–213.CrossRefGoogle Scholar
  11. 12.
    Lamprecht, I., Schaarschmidt, B. and Plesser, Th. (1987) Extended batch calorimetry on periodic chemical reactions, Thermochim. Acta 119, 175–187.CrossRefGoogle Scholar
  12. 13.
    Wendlant, W. W. and Stranahan, J. (1976) A combined titration calorimeter and fixed wavelength calorimeter, Thermochim. Acta 17, 295–300.CrossRefGoogle Scholar
  13. 14.
    Mcllvaine, P. and Langerman, N. (1977) A calorimetric investigation of the growth of the luminescent bacteria beneckea harveyi and photobacterium leiognathi, Biophys. J. 17, 17–25.CrossRefGoogle Scholar
  14. 15.
    Langerman, N. (1978) The simultaneous determination of heat changes and light production, Methods in Enzymology LVII, 540–549.CrossRefGoogle Scholar
  15. 16.
    Timpe, H. J., Strehmel, B., Roch, F. H. and Fritzsche, K., Lichtinduzierte polymer und polymerisationsreaktionen (1987) Acta Polymerica 38, 238–244.Google Scholar
  16. 17.
    Theweleit, E. and Kunze, W. (1987) Method und anwendung der photokalorimetrie (methods and applications of photocalorimetry), Kunstoffe 77, 870–873.Google Scholar
  17. 18.
    Appelt, B. K. and Abadie, M. J. M. (1985) Thermal analysis of photocurable materials, Polym. Eng. Sci. 25, 931–935.CrossRefGoogle Scholar
  18. 19.
    Abadie, M. J. M. and Appelt, B. K. (1988) Photocalorimetric study of photosensitive materials, Bull. Soc. Chim. Fr. 1, 20–24.Google Scholar
  19. 20.
    Sastre, R., Conde, M. and Mateo, J. L. (1988) Photoinitiated bulk polymerization of lauryl acrylate by n-acetyl-4-nitro-1-naphthylamine in the presence of n, n-dimethylaniline, J. Photochem. Photobiol 44, 111–122.CrossRefGoogle Scholar
  20. 21.
    Sastre, R., Conde, M., Catalina, F. and Mateo, J. L. (1989) Desarrollo de un nuevo fotocalorimetro aplicable al estudio de polimeros fotosensibles, Revista de Plasticos Modernos 393, 375–383.Google Scholar
  21. 22.
    Thomas, L. C. (1987) How well does your photopolymer cure?, Res. Dev. 29, 86–90.Google Scholar
  22. 23.
    Cattiaux, J. (1988) Differential photocalorimetric analysis: a new technique for characterization of photosensitive materials, Analusis 16, 31–33.Google Scholar
  23. 24.
    Cox, R. J. (1988) Photocalorimetric investigation in solid films, Polym. Prep. (Am. Chem. Soc. Div. Polym. Chem.) 29, 122–123.Google Scholar
  24. 25.
    Fischer, E. and Soreau, M. (1988) Photocalorimetry: methods and applications, Analusis 16, 34–37.Google Scholar
  25. 26.
    Perkin-Elmer, Dupont, and Thermal Analysis instruments are a few examples of commercial DPC photocalorimeters.Google Scholar
  26. 27.
    Tasaki, I. and Iwasa, K. (1981) Temperature changes associated with nerve excitation: detection by using polyvinylidene fluoride film, Biochem. Biophys. Res. Commun. 101, 172–176.CrossRefGoogle Scholar
  27. 28.
    Tasaki, I. and Nakaye, T. (1985) Heat generated by the dark-adapted squid retina in response to light pulses, Science 227, 654–655.CrossRefGoogle Scholar
  28. 29.
    Tasaki, I. and Nakaye, T. (1986) Heat produced by the dark-adapted bullfrog retina in response to light pulses, Biophys. J. 50, 285–293.CrossRefGoogle Scholar
  29. 30.
    Hagins, W. A., Ross, P. D., Tate, R., L. and Yoshikami, S. (1989) Transduction heats in retinal rods: Tests of the role of cGMP by pyroelectric calorimetry, Proc. Natl. Acad. Sci. USA 86, 1224–1228.CrossRefGoogle Scholar
  30. 31.
    Birge, R. R. and Cooper, T. M. (1986) Energy storage in the primary step of the photocycle of bacteriorhodopsin, Biophys. J. 42, 61–69.CrossRefGoogle Scholar
  31. 32.
    Birge, R. R., Cooper, T. M., Lawrence, A. F., Masthay, M. B., Vasilakis, C., Zhang, C. F. and Zidovetzki, R. (1989) A spectroscopic, photocalorimetric, and theoretical investigation of the quantum efficiency of the primary event in bacteriorhodopsin., J. Am. Chem. Soc. 111, 4063–4074.CrossRefGoogle Scholar
  32. 33.
    Klassen, J. K., Selke, M., Sorensen, A. A. and Yang, G. K. (1990) Metal-ligand bond dissociation energies in CpMn(CO2)L complexes, J. Am. Chem. Soc, 112, 1267–1268.CrossRefGoogle Scholar
  33. 34.
    Yang, P. F. and Yang, G. K. (1992) Haloalkanes as ligands. Spectroscopic and energetic studies of CpMn(CO)2XR, J. Am. Chem. Soc. 114, 6937–6938.CrossRefGoogle Scholar
  34. 35.
    Hester, D. M., Sun, J., Harper, A. W. and Yang, G. K. (1992) Characterization of the energy surface for oxidative addition of silanes to CpMn(CO2)(Heptane), J. Am. Chem. Soc. 114, 5234–5240.CrossRefGoogle Scholar
  35. 36.
    Rappich, J. and Dohrmann, J. K. (1990) Competitive photoelectrochemical processes as studied by in situ photocalorimetry: competition between the photoanodic oxidation of a solute (CI, Br, H2O2, SO3 2−) and that of water in some n-type TiO2 electrodes, J. Phys. Chem. 94, 7735–7739.CrossRefGoogle Scholar
  36. 37.
    Dohrmann, J. K. and Schaaç N.-S. (1992) Energy conversion by photoelectrolysis of water: determination of efficiency by in situ photocalorimetry, J. Phys. Chem. 96, 4558–4563.CrossRefGoogle Scholar
  37. 38.
    Posten, P. E. and Harris, J. M. (1990) Excited-state calorimetry studies of triplet benzophenone using time-resolved photothermal beam deflection spectroscopy, J. Am. Chem. Soc. 112, 644–650.CrossRefGoogle Scholar
  38. 39.
    Juhl, A. and Bimberg, D. (1988) Calorimetric absorption and transmission spectroscopy for determination of quantum efficiencies and characterization of ultrathin layers and nonradiative centers, J. Appl. Phys. 64, 303–309.CrossRefGoogle Scholar
  39. 40.
    Geraghty, P., Wixom, M. and Francis, A., H. (1984) Photocalorimetric spectroscopy and ac calorimetry of thin surface films, J. Appl Phys. 55, 2780–2785.CrossRefGoogle Scholar
  40. 41.
    Atkinson, R. (1985) Development of a wavelength scanning laser calorimeter, Applied Optics 24, 464–471.CrossRefGoogle Scholar
  41. 42.
    Seybold, P.G., Gouterman, M. and Callis, J. (1969) Calorimetric, photometric and lifetime determinations of fluorescence yields of fluorescein dyes, Photochem. Photobiol 9, 229–242.CrossRefGoogle Scholar
  42. 43.
    Mardelli, M. and Olmsted III, J. (1977) Calorimetric determination of the 9, 10-diphenyl-anthracene fluorescence quantum yield, J. Photochem. 7, 277–285.CrossRefGoogle Scholar
  43. 44.
    Magde, D., Brannon, J. H., Cremers, T. L. and Olmsted III, J. (1979) Absolute luminescence yield of cresyl violet. A standard for the red, J. Phys. Chem. 83, 696–699.CrossRefGoogle Scholar
  44. 45.
    Olmsted III, J. (1979) Photon flux measurements using calorimetry, Rev. Sci. Instr. 50, 1256–1259.CrossRefGoogle Scholar
  45. 46.
    Olmsted III, J. (1980) Photocalorimetric studies of singlet oxygen reactions, J. Am. Chem. Soc. 102, 66–71.CrossRefGoogle Scholar
  46. 47.
    Adamson, A. W., Vogler, A., Kunkely, H. and Wachter, R. (1978) Photocalorimetry. Enthalpies of photolysis of trans-azobenzene, ferrioxalate and cobaltioxalate ions, chromium hexacarbonyl, and dirhenium decarbonyl, J. Am. Chem. Soc. 100, 1298–1300.CrossRefGoogle Scholar
  47. 48.
    Nakashima, M. and Adamson, A. W. (1982) Photocalorimetry. 2. enthalpies of ligand substitution reactions of some group 6 metal carbonyl complexes in solution, J. Phys. Chem. 86, 2905–2909.CrossRefGoogle Scholar
  48. 49.
    Nakashima, M. and Adamson, A. W. (1982) Photocalorimetry. 3. enthalpies of substitution reactions of some Cr(III) ammines and Cr(III) and Co(III) cyano complexes in aqueous solution, J. Phys. Chem. 86, 2910–2912.CrossRefGoogle Scholar
  49. 50.
    Harel, Y. and Adamson, A.W., (1986) Photocalorimetry. 4. enthalpies of substitution reactions of rhodium(III) and iridium(III) pentaamine halides and of ruthenium(II) hexaamine, J. Phys. Chem. 90, 6690–6693.CrossRefGoogle Scholar
  50. 51.
    Harel, Y. and Adamson, A.W., (1986) Photocalorimetry. 5. enthalpies of reaction of M2(CO)10 (M=Mn, Re) compounds with iodine in cyclohexane solution at 25°C, J. Phys. Chem. 90, 6693–6696.CrossRefGoogle Scholar
  51. 52.
    Harel, Y., Adamson, A. W., Kutal, C., Grutsch, P. A. and Yasufuku, K. (1987) Photocalorimetry. 6. enthalpies of isomerization of norbornadiene and of substituted norbornadienes to corresponding quadricyclenes, J. Phys.Chem. 91, 901–904.CrossRefGoogle Scholar
  52. 53.
    Wachter, R. (1991) Private communication. Physical Chemistry Department, University of Regensburg, Germany.Google Scholar
  53. 54.
    Winkler, M. G. (1987) Die Photokalorimetrische Bestimmung der Bindungsenthalpien von Carbonylcomplexen der VI Nebengruppe, PHD Thesis, Naturwiss. Fak., Univ.Regensburg, FRG.Google Scholar
  54. 55.
    Cooper, A. and Converse, C. A. (1976) Energetics of primary processes in visual excitation: photocalorimetry of rhodopsin in rod outer segment membranes, Biochemistry 15, 2970–2978.CrossRefGoogle Scholar
  55. 56.
    Cooper, A. (1979) Energy uptake in the first step of visual excitation, Nature 282, 531–533.CrossRefGoogle Scholar
  56. 57.
    Cooper, A. (1982) Calorimetric measurements of light-induced processes, Methods in Enzymology 88, 667–673.CrossRefGoogle Scholar
  57. 58.
    Cooper, A. (1979) Energetics of rhodopsin and isorhodopsin, FEBS Lett. 100, 382–384.CrossRefGoogle Scholar
  58. 59.
    Cooper, A., Dixon, S. F. and Tsuda, M. (1986) Photoenergetics of octopus rhodopsin. Convergent evolution of biological photon counters?, Eur. Biophys. J. 13, 195–201.CrossRefGoogle Scholar
  59. 60.
    Teixeira, C. and Wadsö, I. (1990) A microcalorimetric vessel for photochemical processes in solution, J. Chem. Thermodyn. 22, 703–713.CrossRefGoogle Scholar
  60. 61.
    Bäckman, P., Bastos, M., Briggner, L.-E., Hägg, S., Hallén, D., Lönnbro, P., Nilsson, S.-O., Olofeson, G., Schön, A., Suurkuusk, J., Teixeira, C. and Wadsö, I. (1994) A system of microcalorimeters, Pure & Appl. Chem. 66, 375–382; references cited therein.CrossRefGoogle Scholar
  61. 62.
    Dias, A. R., Diogo, H., Minas da Piedade, M. E., Simoni, J. A., Martinho Simöes, J. A., Teixeira, C., Meng-Yan, Y. and Pilcher, G. (1992) Enthalpies of formation of cis-and trans-azobenzene, J. Chem. Thermodyn. 24, 439–447.CrossRefGoogle Scholar
  62. 63.
    Dias, P. B., Teixeira, C., Dias, A. R., Simoni, J. A. and Martinho Simões, J. A., (1994) Photomicrocalorimetry: photosubstitution of carbonyl by phosphites in the complex Mn(η5-C5H4CH3XCO)3, J. Organomet. Chem. 482, 111–118.CrossRefGoogle Scholar
  63. 64.
    Santana, A. (1994). Microcalorimetria e fotocalorimetria. Algumas aplicações, Centro de Química Estrutural, Institute Superior Técnico, Lisboa, Portugal.Google Scholar
  64. 65.
    Silva, E. (1994) Microcalorimetria defluxo de calor e fotocalorimetria. Centro de Química Estrutural, Institute Superior Técnico and Institute Tecnológico para a Europa Comunitária, Lisboa, Portugal.Google Scholar
  65. 66.
    Almada, S. (1994) Microcalorimetria de fluxo de calor e fotocalorimetria. Centro de Química Estrutural, Institute Superior Técnico and Institute Tecnológico para a Europa Comunitária, Lisboa, Portugal.Google Scholar
  66. 67.
    Ferreira da Silva, P. (1996) Termoquímica defosfinas e de complexos organometálicos, PhD. Thesis, Centro de Química Estrutural, Institute Superior Técnico, Lisboa, Portugal.Google Scholar
  67. 68.
    Ribeiro da Silva, M. D. (1994) Técnicas Calorimétricas, Química, (Boletim da Sociedade Portuguesa de Química) 53, 63–68.Google Scholar
  68. 69.
    Nilsson, S.-O. (1986) A thermochemical study of interactions between water and some hydrocarbons, alcohols and esters, PhD Thesis, Division of Thermochemistry, Lund University, Sweden.Google Scholar
  69. 70.
    Schön, A. (1987) Microcalorimetric studies of the energetics of mammalian cells, PhD. Thesis, Division of Thermochemistry, Lund University, Sweden.Google Scholar
  70. 71.
    Wadsö, I. (1993) On the accuracy of results from microcalorimetric measurements on cellular systems, Thermochim. Acta 219, 1–15.CrossRefGoogle Scholar
  71. 72.
    Wadsö, I. (1992) Isothermal microcalorimetry — A versatile tool for the industrial laboratory, Indian J. Techn. 30, 537–544.Google Scholar
  72. 73.
    Head A. J. and Sabbah, R. (1987) Enthalpy in K. N. Marsh and P. A. G. O’Hare, (eds.) Recommended Reference Materials for the Realization of Physicochemical Properties, Blackwell Scientific Publications, Oxford, 290.Google Scholar
  73. 74.
    Cordfunke, E. H. P. and Ouweltjes (1994), Solution calorimetry for the determination of enthalpies of reaction of inorganic substances at 298.15 K. in K. N. Marsh and P. A. G. O’Hare, (eds.) Experimental Thermodynamics — Vol. TV: Solution Calorimetry, Blackwell Scientific Publications, Oxford, 25–42.Google Scholar
  74. 75.
    Wadsö, I. (1966) Calculation methods in reaction calorimetry, Science Tools 13, 33–39.Google Scholar
  75. 76.
    Sturtevant, J. M. (1976) Calorimetry in A. Weissberger and B. V. Rossiter (eds.) Physical Methods of Chemistry, Vol 1, Part V, Wiley, New York, 523–654.Google Scholar
  76. 77.
    Suurkuusk, J. and Wadsö, I. (1982) A multichannel microcalorimetric system, Chem. Scripta 20, 155–163.Google Scholar
  77. 78.
    Görman, N. M., Laynez, J., Schön, A., Suurkuusk, J. and Wadsö, I. (1984) Design and testing of a new microcalorimetric vessel for use with living cellular systems and in titration experiments, J. Biochem. Biophys. Methods, 10, 187–202.CrossRefGoogle Scholar
  78. 79.
    TAM, Thermal Activity Monitor for highly sensitive isothermal analysis, ThermoMetric Catalog (Multichannel Isothermal Microcalorimetry).Google Scholar
  79. 80.
    TAM, Thermal Activity Monitor, ThermoMetric instructions booklet.Google Scholar
  80. 81.
    Kuhn, H. J., Braslavsky, S. E. and Schmidt, R. (1989) Chemical actinometry, Pure & Appl. Chem. 61, 187–210.CrossRefGoogle Scholar
  81. 82.
    Hatchard, C. G. and Parker, C. A. (1956) A new sensitive chemical actinometer II. Potassium ferrioxalate as a standard chemical actinometer, Proc. Roy. Soc. London A235, 518–536.Google Scholar
  82. 83.
    Rabek, J. F. (1982) Experimental Methods in Photochemistry and Photophysics, Wiley, New York, 944.Google Scholar
  83. 84.
    Dürr, H. (1989) Perpectives in photochromism: a novel system based on the 1,5-electrocyclization of heteroanalogous pentadienyl anions, Angew. Chem. Int. Ed. Engl. 28, 413–431.CrossRefGoogle Scholar
  84. 85.
    Schulze, F.-W., Petrick, H.-J., Cammenga, H. K. and Klinge, H. (1977) Thermodynamic properties of the structural analogues benzo[c]cinnoline, trans-azobenzene and cis-azobenzene, Z Phys. Chem. 107, 1–19.CrossRefGoogle Scholar
  85. 86.
    Dias, P. B., Minas da Piedade, M. E. and Martinho Simões, J. A. (1994) Bonding and energetics of phosphorus(III) ligands in transition metal complexes, Coord. Chem. Rev. 135/136, 737–807 and references cited therein.CrossRefGoogle Scholar
  86. 87.
    Almada, S., Santana, A., Silva, E., Teixeira, C. and Vogler, A. (1994) Fotocalorimetria: aplicaçäo ao estudo de reacçöes fotoquimícas. Metil-cobalamina, XIV Encontro Nacional da Sociedade Portuguesa de Química, Univ. Aveiro.Google Scholar
  87. 88.
    Almada, S., Santana, A., Silva, E., Teixeira, C. and Vogler, A. (1996) Photomicrocalorimetry: Photolysis of Methylohalamin, S4-29a05, 14 th IUP AC Conference on Chemical Thermodynamics, August 25–30, Osaka, Japan.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Clementina Teixeira
    • 1
  1. 1.Centro de Química Estrutural, Complexo InterdisciplinarInstituto Superior TécnicoLisboaPortugal

Personalised recommendations