Advertisement

The Nuts and Bolts and Results of Fluorine Bomb Calorimetry

  • P. A. G. O’Hare
Chapter
Part of the NATO Science Series book series (ASIC, volume 535)

Abstract

The technique of fluorine bomb calorimetry is outlined with special emphasis on the experimental methods, including the construction of the reaction vessel and manifold for operations with F2. A detailed description is included of a determination of the massic energy of reaction and calculation of the enthalpy of formation, Δf H m ° (298.15 K). Safety aspects of operations with F2 are outlined. An appendix lists values of Δf H m ° (GeaXb), most of which were determined by fluorine bomb calorimetry, as well as the mean enthalpies of dissociation of bonds in those compounds. (Here, X denotes O, S, Se, or Te).

Keywords

Massic Energy Vanadium Carbide Standard Molar Enthalpy Uranium Hexafluoride Combustion Bomb 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bear, J. and McTaggart, F. K. (1958) The sulphides, selenides, and tellurides of titanium, zirconium, hafnium, and thorium, Aust. J. Chem. 11, 458–470.CrossRefGoogle Scholar
  2. 2.
    Berthelot, M. and Moissan, H. (1891) Chaleur de combination du fluor avec l’hydrogéne, Ann. Chim. Phys. 23, 570–574.Google Scholar
  3. 3.
    von Wartenberg, H. and Fitzner, O. (1926) Zur Thermochimie des Fluors, Z. Anorg. Allg. Chem. 151, 313–325.CrossRefGoogle Scholar
  4. 4.
    von Wartenberg, H. and Schütte, R. (1933) Die Bildungswärme von SiF4, CF4, und SiC, Z. Anorg. Allg. Chem. 211, 222–226.CrossRefGoogle Scholar
  5. 5.
    von Wartenberg, H. (1939) Die Bildungswärme von AgF2, Z. Anorg. Allg. Chem. 242, 406–412.CrossRefGoogle Scholar
  6. 6.
    Gross, P.; Hayman, C; Levi, D. L. (1959) The heats of formation of inorganic fluorides, XVII International Congress of Pure and Applied Chemistry, Abstracts, Vol. I, p. 90.Google Scholar
  7. 7.
    Hubbard, W. N. (1962) Fluorine bomb calorimetry, in Skinner, H. A. (ed.), Experimental Thermochemistry, Vol. II., Interscience: New York. Chap. 6. pp. 95–127.Google Scholar
  8. 8.
    Leonidov, V. Ya., Gaisinskaya, O. M., Pervov, V. S., and Ordan’yan, S. S. (1976) Termokhimicheskoe issledovanie sistem’i W-B metodom ftornoi kalorimetrii, Zh. Fiz. Khim. 50, 635–638.Google Scholar
  9. 9.
    Domalski, E. S. and Armstrong, G. T. (1965) Heat of formation of aluminum fluoride by direct combination of the elements, J. Res. Natl. Bur. Stand. (U.S.) 69A, 137–147.CrossRefGoogle Scholar
  10. 10.
    Wood, J. L., Lagow, R. J., and Margrave, (1967) The heat of combustion of Teflon in fluorine. A check on the heat of formation of carbon tetrafluoride, J. Chem. Eng. Data 12, 255–256.CrossRefGoogle Scholar
  11. 11.
    Schröder, J. and Sieben, F. J. (1970) Bildungsenthalpie von Wolframhexafluorid und Wolframpentafluorid, Chem. Ber. 103, 76–81.CrossRefGoogle Scholar
  12. 12.
    Kim, Y.-C., Oishi, J., and Kang, S.-H. (1977) The enthalpy of formation of samarium trifluoride, J. Chem. Thermodyn. 9, 973–977.CrossRefGoogle Scholar
  13. 13.
    Spychiger, H., Kaldis, E., and Fritzler, B. (1986) Fluorine combustion calorimetry of rare earth chalcogenides, Rev. Chim. Mineral. 23, 634–646.Google Scholar
  14. 14.
    O’Hare, P. A. G. (1992) Thermodynamic properties of silicides. I. Calorimetric measurements of the specific energy of combustion in fluorine of hyperstoichiometric tungsten disilicide, and the derived standard molar enthalpy of formation δfHm°(WSi2.060) at the temperature 298.15 K, J. Chem. Thermodyn. 24, 1323–1332.CrossRefGoogle Scholar
  15. 15.
    O’Hare, P. A. G. (1993) Thermodynamic properties of silicides. III. Specific energy of combustion in fluorine of a hyperstoichiometric molybdenum disilicide. The standard molar enthalpy of formation ΔfHm° of MoSi2.067±0.002 at the temperature 298.15 K, J. Chem. Thermodyn. 25, 1333–1343.CrossRefGoogle Scholar
  16. 16.
    O’Hare, P. A. G., Tomaszkiewicz, I., and Seifert, H. J. (1997) The standard molar enthalpies of formation of α-Si3N4 and β-Si3N4 by combustion calorimetry in fluorine, and the enthalpy of the α-to-β transition at the temperature 298.15 K, J. Mater. Res. 12, 3203–3205.CrossRefGoogle Scholar
  17. 17.
    Hubbard, W. N., Johnson, G. K., and Leonidov, V. Ya. (1979) Combustion in fluorine and other halogens, in S. Sunner and M. Månsson (eds.), Experimental Chemical Thermodynamics Volume 1. Combustion Calorimetry, Pergamon: New York. Chap. 12, pp. 255–289.Google Scholar
  18. 18.
    Leonidov, V. Ya. and O’Hare, P. A. G. (1992) Fluorine combustion calorimetry: progress in recent years and possibilities of further development, Pure Appl. Chem. 64, 103–110.CrossRefGoogle Scholar
  19. 19.
    Hubbard, W. N., Katz, C., and Waddington, G. (1954) A rotating combustion bomb for precision calorimetry. Heats of combustion of some sulfur-containing compounds, J. Phys. Chem. 58, 142–152.CrossRefGoogle Scholar
  20. 20.
    Larson, J. W., Johnson, G. K., O’Hare, P. A. G., Hubbard, W. N., and Glemser, O. (1973) The enthalpy of formation of thiazyl monofluoride (NSF). Bond dissociation enthalpies of thiazyl tri-and monofluorides and related nitrogen-sulfur-fluorine compounds, J. Chem. Thermodyn. 5, 689–697.CrossRefGoogle Scholar
  21. 21.
    Nuttall, R. L., Wise, S., and Hubbard, W. N. (1961) Combustion bomb reaction vessel for spontaneously combustible materials, Rev. Sci. Instrum. 32, 1402–1403.CrossRefGoogle Scholar
  22. 22.
    O’Hare, P. A. G. and Hubbard, W. N. (1966) Fluorine bomb calorimetry. XVII. The enthalpy of formation of tungsten hexafluoride, J. Phys. Chem. 70, 3353–3355.CrossRefGoogle Scholar
  23. 23.
    Johnson, G. K. (1979) The enthalpy of formation of uranium hexafluoride, J. Chem. Thermodyn. 11, 483–490.CrossRefGoogle Scholar
  24. 24.
    Rudzitis, E., Feder, H. M., and Hubbard, W. N. (1965) Fluorine bomb calorimetry. XI. The enthalpy of formation of yttrium trifluoride, J. Phys. Chem. 69, 2305–2307.CrossRefGoogle Scholar
  25. 25.
    Rudzitis, E., Terry, R., Feder, H. M., and Hubbard, W. N. (1964) Fluorine bomb calorimetry. VIII. The enthalpy of formation of zinc difluoride, J. Phys. Chem. 68, 617–619.CrossRefGoogle Scholar
  26. 26.
    Ader, M. (1974) Enthalpy of formation of lithium monoselenide, J. Chem. Thermodyn. 6, 587–597.CrossRefGoogle Scholar
  27. 27.
    Greenberg, E. and Hubbard, W. N. Fluorine bomb calorimetry. XXIII. The enthalpy of formation of carbon tetrafluoride, J. Phys. Chem. 72, 222–227.Google Scholar
  28. 28.
    Johnson, G. K. (1981) The enthalpy of formation of FeF3 by fluorine bomb calorimetry, J. Chem. Thermodyn. 13, 465–469.CrossRefGoogle Scholar
  29. 29.
    Stein, L., Rudzitis, E., and Settle, J. L. (1961) Purification of fluorine by distillation, U.S. Atomic Energy Comm. Rept. ANL-6364.Google Scholar
  30. 30.
    Rudzitis, E., Feder, H. M., and Hubbard, W. N. (1967) Fluorine bomb calorimetry. XXII. The enthalpy of formation of aluminum trifluoride, Inorg. Chem. 6, 1716–1717.CrossRefGoogle Scholar
  31. 31.
    Pervov, V. S., Leonidov, V. Ya., Klyuev, L. I., and Muravina, A. G. (1974) Opredelenie ental’pii obrazovaniya diftorida medi metodom ftornoi kalorimetrii, Dokl. Akad. Nauk SSSR 214, 1088–1090.Google Scholar
  32. 32.
    Funke, V. F. and Samsonov, G. V. (1958) Poluchenie i nekotor’e svoistva nitrida kremiya, Zh. Obshch. Khim. 28, 267–272.Google Scholar
  33. 33.
    Tomaszkiewicz, I., Hope, G. A., Beck, C. M. III, and O’Hare, P. A. G. (1995) Thermodynamic properties of silicides. IV. Determination of the standard molar enthalpy of formation at the temperature 298.15 K of pentatungsten trisilicides of composition W5Si3 and W3Si3.115 by fluorine bomb calorimetry, J. Chem. Thermodyn. 27, 585–596.CrossRefGoogle Scholar
  34. 34.
    Hubbard, W. N. (1956) Standard states and corrections for combustions in a bomb at constant volume, in Rossini, F. D. (ed.), Experimental Thermochemistry, Interscience: New York. Chap. 5. pp. 75–128.Google Scholar
  35. 35.
    O’Hare, P. A. G. (1985) Thermochemistry of inorganic sulfur compounds. IV. Standard molar enthalpy of formation of sulfur hexafluoride, J. Chem. Thermodyn. 17, 349–354.CrossRefGoogle Scholar
  36. 36.
    Settle, J. L., Feder, H. M., and Hubbard, W. N. (1961) Fluorine bomb calorimetry. II. The enthalpy of formation of molybdenum hexafluoride, J. Phys. Chem. 65, 1337–1341.CrossRefGoogle Scholar
  37. 37.
    Johnson, G. K. (1986) The standard molar enthalpy of formation of SiF4(g) at 298.15 K by fluorine bomb calorimetry, J. Chem. Thermodyn. 18, 801–802.CrossRefGoogle Scholar
  38. 38.
    Cox, J. D., Wagman, D. D., and Medvedev, V. A. (eds.) (1989) CODATA Key Values for Thermodynamics. Hemisphere: New York. 1989.Google Scholar
  39. 39.
    Pervov, V. S. and Nikolaev, N. S. (1976) Uspekhi ftornoi kalorimetrii, Usp. Khim. 45, 640–660.CrossRefGoogle Scholar
  40. 40.
    Leonidov, V. Ya. and Medvedev, V. A. (1978) Ftornaya Kalotimelriya. Nauka: Moscow.Google Scholar
  41. 41.
    Gurvich, L. V.; Iorish, V. S.; Chekhovskoi, D. V.; Yungman, V. S. (1993) IVTANTHERMO-A Thermodynamic Database and Software System for the Personal Computer. NIST Special Database 5.Google Scholar
  42. 42.
    O’Hare, P. A. G. and Curtiss, L. A. (1995) Thermochemistry of (germanium + sulfur). IV. Critical evaluation of the thermodynamic properties of solid and gaseous germanium(II) sulfide GeS and germanium(IV) disulfide GcS2, and digcrmanium disulfide Ge2S2. Enthalpies of dissociation of bonds in GeS(g), GeS2 (g), and Ge2S2, J. Chem. Thermodyn. 27, 643–662.CrossRefGoogle Scholar
  43. 43.
    O’Hare, P. A. G., Żywociński, A., and Curtiss, L. A. (1996) Thermodynamics of (germanium + selenium): a review and critical assessment, J. Chem. Thermodyn. 28, 459–480.CrossRefGoogle Scholar
  44. 44.
    O’Hare, P. A. G. (1995) Thermochemistry of (germanium + tellurium). II. Molar enthalpies of dissociation of bonds in GeTe(g), GeTe2(g), and Ge2Te2(g), J. Chem. Thermodyn. 27, 921–926.CrossRefGoogle Scholar
  45. 45.
    Kazenas, E. K., Bol’shikh, M. A., and Petrov, A. A. (1996) Terdinamika protsessov ispareniya dissotsiatsii i gazofazn’ikh reaktsii v parakh nad sistemoi germanii-kislorod, Izv. Ross. Akad. Nauk. Metally (3), 29–35.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • P. A. G. O’Hare
    • 1
  1. 1.National Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations