Advertisement

Heats of Formation by Density Functional Theory Calculations

  • N. L. Allinger
Part of the NATO Science Series book series (ASIC, volume 535)

Abstract

The idea that the heat of formation of an organic molecule may be calculated by the additivity of bond energies goes back for a long time, and the method was reasonably successful. It is limited in a major way if molecules contain strain, because the bond additivities do not in themselves include such strain. However, if the strain is independently determined, it can be added into the calculation. This was done by hand methods years ago by simply assigning a strain energy to a five-membered ring, a different strain energy to a four-membered ring and so on. The method works to a reasonable extent, but the strain energies of all five-membered rings have to be equal, for example, for this method to work. Sometimes this condition is satisfied, but it does not work in general.

We can determine the strain energies in molecules by either quantum mechanical methods, or by molecular mechanical methods. Either way, we can sum this together with ordinary bond energy terms and calculate the heats of formation of molecules. The question is, how general is this, and how accurate?

We have carried out these methods in some detail for saturated hydrocarbons, and are extending the methods like various functionalized derivatives of hydrocarbons. The results at the hydrocarbon level are instructive, and indicate what is expected to follow.

For a substantial number of hydrocarbons which have experimentally known heats of formation (approximately 30 compounds), the calculations almost always give the heats of formation to within certain error limits. These error limits depend upon the exact method used. If the Hartree-Fock method at the 6-31G* basis level is used, the rms error is about 0.8 kcal/mol. if the molecular mechanics or DFT method is used, the error is about 0.4 kcal/mol. The reported experimental errors are about 0.4 kcal/mol. Hence the conclusion is that for saturated hydrocarbons, we can calculate either by molecular mechanics (MM4), or by ab initio-DFT methods, the heats of formation to within experimental accuracy, on average.

Keywords

Saturated Hydrocarbon Experimental Accuracy Large Ring Functionalized Molecule American Petroleum Institute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. B. Pedley, R. D. Naylor, and S. P. Kirby, Thermochemical Data of Organic Compounds, second edition, Chapman and Hall, London (1986).CrossRefGoogle Scholar
  2. 2.
    K. B. Wiberg, J. Comput. Chem., 5, 197 (1984).CrossRefGoogle Scholar
  3. 3.
    M. R. Ibrahim, P. v. R. Schleyer, J. Comput. Chem., 6, 157 (1985).CrossRefGoogle Scholar
  4. 4.
    N. L. Allinger, L. R. Schmitz, I. Motoc, C. Bender, and J. K. Labanowski, J. Phys. Org. Chem., 3, 732 (1990).CrossRefGoogle Scholar
  5. 5.
    (a) A. D. Becke, J. Chem. Phys., 96, 2155 (1992); (b) A. D. Becke, Int. J. Quantum Chem., Quantum Chem. Symp., 28, 625 (1994); (c) D. R. Salahub, R. Fournier, P. Mlynarski, I. Papai, A. St-Amant, and J. Ushio, in Density Functional Methods in Chemistfy; J. Labanowski, and J. Andzelm, Eds.; Springer-Verlag: New York, 1991; p 77; (d) D. R. Salahub, M. Castro and E. I. Proynov, NATO ASI Ser., Ser B, 318, 411 (1994).CrossRefGoogle Scholar
  6. 6.
    S. W. Benson, Thermochemical Kinetics: Methods for the Estimation of Thermochemical Data and Rate Parameters, Wiley, New York, 1976.Google Scholar
  7. 7.
    (a) U. Burkert and N. L. Allinger, Molecular Mechanics, ACS, Washington, DC (1982); (b) D. W. Wertz and N. L. Allinger, Tetrahedron, 35, 3 (1979); (c) N. L. Allinger, L. R. Schmitz, I. Motoc, C. Bender, and J. Labanowski, J. Am. Chem. Soc., 114, 2880 (1992).Google Scholar
  8. 8.
    N. L. Allinger, L. Yang, I. Motoc, C. Bender, and J. Labanowski, Heteroatom Chemistry, 3, 69 (1992).CrossRefGoogle Scholar
  9. 9.
    L. R. Schmitz, I. Motoc, C. Bender, J. K. Labanowski, and N. L. Allinger, J. Phys. Org. Chem., 5, 225 (1992).CrossRefGoogle Scholar
  10. 10.
    N. L. Allinger, L. R. Schmitz, I. Motoc, C. Bender, and J. K. Labanowski, J. Comput. Chem., 13, 838 (1992).CrossRefGoogle Scholar
  11. 11.
    R. Liu and N. L. Allinger, J. Phys. Org. Chem., 6, 551 (1993).CrossRefGoogle Scholar
  12. 12.
    (a) J. Labanowski, L. R. Schmitz, and N. L. Allinger, J. Comput. Chem., in press, June 1998; (b) L. R. Schmitz and K.-H. Chen, unpublished work.Google Scholar
  13. 13.
    (a) N. L. Allinger, Y. H. Yuh, and J.-H. Lii, J. Am. Chem. Soc., 111, 8551, 8566, 8576 (1989); (b) N. L. Allinger, K. Chen, and J.-H. Lii, J. Comput. Chem., 17, 642 (1996); N. Nevins, K. Chen, and N. L. Allinger, J. Comput. Chem., 17, 669 (1996); N. Nevins, J.-H. Lii, and N. L. Allinger, J. Comput. Chem., 17, 695 (1996); N. Nevins and N. L. Allinger, J. Comput. Chem., 17, 730 (1996); N. L. Allinger, K. Chen, J. A. Katzenellenbogen, S. R. Wilson, and G. M. Anstead, J. Comput. Chem., 17, 747 (1996).CrossRefGoogle Scholar
  14. 14.
    Gaussian 94, Revision B.3, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1995.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • N. L. Allinger
    • 1
  1. 1.Department of Chemistry Computational Center for Molecular Structure and DesignUniversity of GeorgiaAthensUSA

Personalised recommendations