Ab Initio Thermochemistry Beyond Chemical Accuracy for First-and Second-Row Compounds

  • Jan M. L. Martin
Part of the NATO Science Series book series (ASIC, volume 535)


By judicious use of extrapolations to the 1-particle basis set limit and n-particle calibration techniques, total atomization energies of molecules with up to four heavy atoms can be obtained with calibration accuracy (1 kJ/mol or better, on average) without any empirical correction. For the SCF energy a 3-point geometric extrapolation is the method of choice. For the MP2 correlation energy, a 2-point A+B/(l+1/2)3 extrapolation is recommended, while for CCSD and CCSD(T) correlation energies we prefer the 3-point A + B/(l + l/2) C formula. Addition of high-exponent ‘inner polarization functions’ to second-row atoms is essential for reliable results. For the highest accuracy, accounts are required of inner-shell correlation, atomic spin-orbit splitting, anharmonicity in the zero-point energy, and scalar relativistic effects.


Correlation Energy Triple Excitation Core Correlation Atomic Natural Orbital Valence Correlation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Irikura, K. K. contribution in this volume.Google Scholar
  2. 2.
    Allinger, N. L. and von Ragué Schleyer, P. Eds. (1996) Special Issue on Molecular Mechanics 1 & 2, J. Comput. Chem. 17(4–6). Burkert, U. and Allinger, N. L. (1982) Molecular Mechanics (ACS Monograph 177, American Chemical Society, Washington, DC)Google Scholar
  3. 3.
    Thiel, W. (1998) Thermochemistry from semiempirical molecular orbital theory, in Computational Thermochemistry (Irikura, K. K. and Frurip, D. J., Eds.), ACS Symposium Series, Nr. 677, American Chemical Society, Washington, DC, p. 142CrossRefGoogle Scholar
  4. 4.
    Curtiss, L. A., Raghavachari, K., Trucks, G. W., and Pople, J. A. (1991) Gaussian-2 theory for molecular energies of first-and second-row compounds, J. Chem. Phys. 94, 7221CrossRefGoogle Scholar
  5. 5.
    Curtiss, L. A. and Raghavachari, K. (1998) Computational methods for calculating accurate enthalpies of formation, ionization potentials, and electron affinities, in Computational Thermochemistry (Irikura, K. K. and Frurip, D. J., Eds.), ACS Symposium Series, Nr. 677, American Chemical Society, Washington, DC, p. 176CrossRefGoogle Scholar
  6. 6.
    Martin, J. M. L. (1997) Very accurate ab initio binding energies — a comparison between empirical corrections and extrapolation methods, J. Mol. Struct. (theochem) 398, 135CrossRefGoogle Scholar
  7. 7.
    Martin, J. M. L. (1998) Calibration study of atomization energies of small poly-atomics, in Computational Thermochemistry (Irikura, K. K. and Frurip, D. J., Eds.), ACS Symposium Series, Nr. 677, American Chemical Society, Washington, DC, p. 212CrossRefGoogle Scholar
  8. 8.
    Zachariah, M. R. and Melius, C. F. (1998) Bond-additivity correction of ab initio computations for accurate prediction of thermochemistry, in Computational Thermochemistry (Irikura, K. K. and Frurip, D. J., Eds.), ACS Symposium Series, Nr. 677, American Chemical Society, Washington. DC, p. 162CrossRefGoogle Scholar
  9. 9.
    Blomberg, M. R. A. and Siegbahn, P. E. M. (1998) Calculating bond strengths for transition metal complexes, in Computational Thermochemistry (Irikura, K. K. and Frurip, D. J., Eds.), ACS Symposium Series, Nr. 677, American Chemical Society, Washington, DC, p. 197CrossRefGoogle Scholar
  10. 10.
    Gordon, M. S. and Truhlar, D. G. (1986) Scaling all correlation energy in perturbation theory calculations of bond energies and barrier heights, J. Am. Chem. Soc. 108, 5412; (1987) Correlation Balance in Basis Sets for Electronic Structure Calculations, Int. J. Quantum Chem. 31, 81; Gordon, M. S., Nguyen, K. A., and Truhlar, D. G. (1989) Parameters for Scaling the Correlation Energy of the Bonds Si-H, P-H, S-H, and Cl-H and Application to the Reaction of Silyl Radical with Silane, J. Phys. Chem. 93, 7356; Rossi, I. and Truhlar, D. G. (1995) Improved General Scaling Factors and Systematic Tests of the SAC Method for Estimating Correlation Energies of Molecules, Chem. Phys. Lett. 234, 64CrossRefGoogle Scholar
  11. 11.
    Ochterski, J. W., Petersson, G. A., and Montgomery Jr., J. A. (1996) A complete basis set model chemistry.5. Extensions to six or more heavy atoms, J. Chem. Phys. 104, 2598 and references therein.CrossRefGoogle Scholar
  12. 12.
    Petersson, G. A. (1998) Complete basis-set thermochemistry and kinetics, in Computational Thermochemistry (Irikura, K. K. and Frurip, D. J., Eds.), ACS Symposium Series, Nr. 677, American Chemical Society, Washington, DC, p. 237CrossRefGoogle Scholar
  13. 13.
    Becke, A. D. (1993) Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98, 5648CrossRefGoogle Scholar
  14. 14.
    Becke, A. D. (1997) Density-functional thermochemistry.5. Systematic optimization of exchange-correlation functionals, J. Chem. Phys. 107, 8554CrossRefGoogle Scholar
  15. 15.
    Shavitt, I. (1998) The history and evolution of configuration interaction, Mol. Phys. 94, 3CrossRefGoogle Scholar
  16. 16.
    Bartlett, R. J. and Purvis, G. D. (1978) Many-body perturbation theory, coupled-pair many-electron theory, and the importance of quadruple excitations for the correlation problem, Int. J. Quantum Chem. 14, 561CrossRefGoogle Scholar
  17. 17.
    Pople, J. A., Binkley, J. S., and Seeger, R. (1976) Theoretical models incorporating electron correlation, Int. J. Quantum Chem. Symp. 10, 1CrossRefGoogle Scholar
  18. 18.
    Møller, C. and Plesset, M. S. (1934) Note on an approximation treatment for many-electron systems, Phys. Rev. 46, 618CrossRefGoogle Scholar
  19. 19.
    Goldstone, J. (1957) Derivation of the Brueckner many-body theory, Proc. Royal Soc. (London) A 239, 267CrossRefGoogle Scholar
  20. 20.
    Kucharski, S. and Bartlett, R. J. (1986) Fifth-order many-body perturbation theory and its relationship to various coupled-cluster approaches, Adv. Chem. Phys. 18, 281Google Scholar
  21. 21.
    Cremer, D. and He, Z. (1996) Sixth-order Moller-Plesset perturbation theory — On the convergence of the MPn series, J. Phys. Chem. 100, 6173CrossRefGoogle Scholar
  22. 22.
    He, Z. and Cremer, D. (1996) Sixth-order many-body perturbation theory. 1. Basic theory and derivation of the energy formula, Int. J. Quantum Chem. 59, 15; (1996) Sixth-order many-body perturbation theory.2. Implementation and application, Int. J. Quantum Chem. 59, 31; (1996) Sixth-order many-body perturbation theory.3. Correlation energies of size-extensive MP6 methods, Int. J. Quantum Chem. 59, 57; (1996) Sixth-order many-body perturbation theory.4. Improvement of the Moller-Plesset correlation energy series by using Pade, Feenberg, and other approximations up to sixth order, Int. J. Quantum Chem. 59, 71CrossRefGoogle Scholar
  23. 23.
    Bartlett, R. J. (1989) Coupled-Cluster approach to molecular structure and spectra: a step towards predictive quantum chemistry, I. Phys. Chem. 93, 1697CrossRefGoogle Scholar
  24. 24.
    Taylor, P. R. “Coupled-cluster methods in quantum chemistry”, in Lecture Notes in Quantum Chemistry II; Roos, B. O., Ed.: Lecture Notes in Chemistry 64; Springer: Berlin, 1994, pp 125–202.CrossRefGoogle Scholar
  25. 25.
    Bartlett, R. J. and Stanton, J. F. (1994) Applications of Post-Hartree-Fock Methods: A Tutorial, in Reviews in Computational Chemistry, Vol. V (Lipkowitz, K. B., Boyd, D. B., Eds.) VCH, New York, pp. 65–169.CrossRefGoogle Scholar
  26. 26.
    Lee, T. J. and Scuseria, G. E. (1995) In Quantum mechanical electronic structure calculations with chemical accuracy (Langhoff, S. R., Ed.) Kluwer, Dordrecht, The Netherlands., pp. 47–108.CrossRefGoogle Scholar
  27. 27.
    Bartlett, R. J. (1995) Coupled cluster theory: an overview of recent developments, in Modern Electronic Structure Theory. Vol. 2 (Yarkony, D. R., Ed.); World Scientific, Singapore, pp. 1047–1131.CrossRefGoogle Scholar
  28. 28.
    Purvis III, G. D., Bartlett, R. J., (1982) A full coupled-cluster singles and doubles model: the inclusion of disconnected triples, J. Chem. Phys. 76, 1910CrossRefGoogle Scholar
  29. 29.
    Hoffmann, M. R. and Schaefer III, H. F. (1986) A full coupled-cluster singles, doubles, and triples model for the description of electron correlation, Adv. Quantum Chem. 18, 207; Noga, J. and Bartlett, R. J. (1987) The full CCSDT model for molecular electronic structure, J. Chem. Phys. 86, 7041; erratum (1988) 89, 3401; Scuseria, G. E. and Schaefer III, H. F. (1988) A new implementation of the full CCSDT model for molecular electronic structure, Chem. Phys. Lett. 152, 382CrossRefGoogle Scholar
  30. 30.
    Raghavachari, K., Trucks, G. W., Pople, J. A., and Head-Gordon, M. (1989) A fifth-order perturbation comparison of electron correlation theories, Chem. Phys. Lett. 157, 479CrossRefGoogle Scholar
  31. 31.
    Scuseria, G. E. and Lee, T. J. (1990) Comparison of coupled-cluster methods which include the effects of connected triple excitations, J. Chem. Phys. 93, 5851CrossRefGoogle Scholar
  32. 32.
    Pople, J. A., Head-Gordon, M., Raghavachari, K., (1987) Quadratic configuration interaction. A general technique for determining electron correlation energies, I. Chem. Phys. 87, 5968Google Scholar
  33. 33.
    Scuseria, G. E. (1991) The open-shell restricted Hartree-Fock singles and doubles coupled-cluster method including triple excitations CCSD(T): application to C3+, Chem. Phys. Lett. 176, 27CrossRefGoogle Scholar
  34. 34.
    Watts, J. D., Gauss, J., and Bartlett, R. J. (1993) Coupled cluster methods with noniterative triple excitations for restricted open-shell Hartree-Fock and other general single determinant reference functions. Energies and analytical gradients, J. Chem. Phys. 98, 8718CrossRefGoogle Scholar
  35. 35.
    Crawford, T. D. and Schaefer III, H. F. (1996) A comparison of two approaches to perturbation triple excitation corrections to the coupled-cluster singles and doubles method for high-spin open-shell systems, J. Chem. Phys. 104, 6259CrossRefGoogle Scholar
  36. 36.
    Lee, T. J. and Taylor, P. R. (1989) A diagnostic for determining the quality of single-reference electron correlation methods, Int. J. Quantum Chem. Symp. 23, 199Google Scholar
  37. 37.
    Jayatilaka, D. and Lee, T. J. (1993) Open-shell coupled-cluster theory, J. Chem. Phys. 98, 9734CrossRefGoogle Scholar
  38. 38.
    Lee, T. J., Rendell, A. P., and Taylor, P. R. (1990) Comparison of the quadratic configuration interaction and coupled-cluster approaches to electron correlation including the effect of triple excitations, J. Phys. Chem. 94, 5463CrossRefGoogle Scholar
  39. 39.
    Martin, J. M. L., Lee, T. J., Scuseria, G. E., and Taylor, P. R. (1992) Ab initio multireference study of the BN molecule, J. Chem. Phys. 97, 6549CrossRefGoogle Scholar
  40. 40.
    Andersson, K. (1995) The electronic spectrum of Cr2, Chem. Phys. Lett. 237, 212 and references therein.CrossRefGoogle Scholar
  41. 41.
    Roos, B. O. (1987) The complete active space self-consistent field method and its applications in electronic structure calculations, Adv. Chem. Phys. 69, 399CrossRefGoogle Scholar
  42. 42.
    Pearson, R. G. (1969) A symmetry rule for predicting molecular structures, J. Am. Chem. Soc. 91, 4947CrossRefGoogle Scholar
  43. 43.
    Brueckner, K. A. (1954) Nuclear saturation and two-body forces. II. Tensor forces, Phys. Rev. 96, 508CrossRefGoogle Scholar
  44. 44.
    Chiles, R. A. and Dykstra, C. E. (1981) An electron pair operator approach to coupled-cluster wavefunctions. Applications to He2, Be2, and Mg2 and comparison with CEPA methods, J. Chem. Phys. 74, 4544CrossRefGoogle Scholar
  45. 45.
    Handy, N. C., Pople, J. A., Head-Gordon, M., Raghavachari, K., and Trucks, G. W. (1989) Size-consistent Brueckner theory limited to double substitutions, Chem. Phys. Lett. 164, 185CrossRefGoogle Scholar
  46. 46.
    Raghavachari, K., Pople, J. A., Replogle, E. S., Head-Gordon, M., Handy, N. C., (1990) Size-consistent Brueckner theory limited to double and triple excitations, Chem. Phys. Lett. 167, 115CrossRefGoogle Scholar
  47. 47.
    Stanton, J. F., Gauss, J., and Bartlett, R. J. (1992) On the choice of orbitals for symmetry breaking problems with application to NO3, J. Chem. Phys. 97, 5554CrossRefGoogle Scholar
  48. 48.
    Lindh, R. and Barnes, L. A. (1994) The fraternal twins of quartet O4+, J. Chem. Phys. 100, 224–237; Barnes, L. A. and Lindh, R. (1994) Symmetry breaking in O4+: an application of the Brueckner coupled-cluster method, Chem. Phys. Lett. 223, 207–214CrossRefGoogle Scholar
  49. 49.
    Crawford, T. D., Lee, T. J., Handy, N. C., and Schaefer III, H. F. (1997) Spin-restricted Brueckner orbitals for coupled-cluster wavefunctions, J. Chem. Phys. 107, 9980CrossRefGoogle Scholar
  50. 50.
    Kutzelnigg, W. and Smith, V. H. (1961) On different criteria for the best independent-particle model approximation, J. Chem. Phys. 41, 896CrossRefGoogle Scholar
  51. 51.
    Lee, T. J., Kobayashi, R., Handy, N. C., and Amos, R. D. (1992) Comparison of the Brueckner and coupled-cluster approaches to electron correlation, J. Chem. Phys. 96, 8931CrossRefGoogle Scholar
  52. 52.
    Helgaker, T. and Taylor, P. R. (1995) Gaussian Basis Sets and Molecular Integrals, in Modern Electronic Structure Theory, Vol. 2 (Yarkony, D. R., Ed.); World Scientific, Singapore, pp. 725–856.CrossRefGoogle Scholar
  53. 53.
    Raffenetti, R. C. (1973) General contraction of Gaussian atomic orbitals: core, valence, polarization, and diffuse basis sets; molecular integral evaluation, J. Chem. Phys. 58, 4452CrossRefGoogle Scholar
  54. 54.
    Almlöf, J. and Taylor, P. R. (1987) General contraction of Gaussian basis sets. I. Atomic natural Orbitals for first-and second row atoms, J. Chem. Phys. 86, 4070CrossRefGoogle Scholar
  55. 55.
    Dunning Jr., T. H. (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen, J. Chem. Phys. 90, 1007CrossRefGoogle Scholar
  56. 56.
    Martin, J. M. L. (1992) On the performance of large Gaussian basis sets for the computation of total atomization energies, J. Chem. Phys. 97, 5012CrossRefGoogle Scholar
  57. 57.
    Widmark, P. O., Malmqvist, P. Â., and Roos, B. O. (1990) Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions, Theor. Chim. Acta 77, 291CrossRefGoogle Scholar
  58. 58.
    Clark, T., Chandrasekar, J., Spitznagel, G. W., and von Ragué Schleyer, P. (1983) Efficient diffuse-function augmented basis sets for anion calculations. III.The 3-21+G basis set for first-row elements. Li-F, J. Comput. Chem. 4, 294CrossRefGoogle Scholar
  59. 59.
    Kendall, R. A., Dunning, T. H., and Harrison, R. J. (1992) Electron affinities of the first-row atoms revisited — systematic basis sets and wave functions, J. Chem. Phys. 96, 6796CrossRefGoogle Scholar
  60. 60.
    Martin, J. M. L. and Taylor, P. R. (1994) Basis set convergence for geometry and harmonic frequencies — are h functions enough?, Chem. Phys. Lett. 225, 473CrossRefGoogle Scholar
  61. 61.
    Martin, J. M. L., François, J. P., and Gijbels. R. (1994) Accurate ab initio quartic force fields and thermochemistry of FNO and ClNO, J. Phys. Chem. 98, 11394CrossRefGoogle Scholar
  62. 62.
    Del Bene, J. E. (1993) Proton affinities of NH3, H2O, and HF and their anions — A quest for the basis set limit using the Dunning augmented correlation consistent basis sets, J. Phys. Chem. 97, 107CrossRefGoogle Scholar
  63. 63.
    Martin, J. M. L., François, J. P., and Gijbels, R. (1989) Accurate ab initio predictions of the dissociation energy and heat of formation of first-row hydride species, Chem. Phys. Lett. 163, 387 and references therein.CrossRefGoogle Scholar
  64. 64.
    Martin, J. M. L., François, J. P., and Gijbels, R. (1989) Combined bond-polarization basis sets for accurate determination of dissociation energies. 2. Basis set superposition error as a function of the parent basis set, J. Comput. Chem. 10, 875CrossRefGoogle Scholar
  65. 65.
    Bauschlicher Jr., C. W. and Partridge. H. “Do bond functions help for the calculation of accurate bond energies?”, J. Chem. Phys., in press.Google Scholar
  66. 66.
    Tao, F.-M. (1994) A new approach to the efficient basis set for accurate molecular calculations: Applications to diatomic molecules, J. Chem. Phys. 100, 3645 and references thereinCrossRefGoogle Scholar
  67. 67.
    Partridge, H. and Bauschlicher Jr., C. W. “The dissociation energy of He2, HeH, and ArH: a bond function study”, Mol. Phys.. in press (B. Liu memorial issue).Google Scholar
  68. 68.
    Martin, J. M. L. (1998) Basis set convergence study of the atomization energy, geometry, and anharmonic force field of SO2. The importance of inner polarization functions, J. Chem. Phys. 108, 2791CrossRefGoogle Scholar
  69. 69.
    Martin, J. M. L. (1995) On the effect of core correlation on geometries and harmonic frequencies of small polyatomics. Chem. Phys. Lett. 242, 343CrossRefGoogle Scholar
  70. 70.
    Martin, J. M. L. (1998) Anharmonic force fields and accurate thermochemistry of H2SiO, cis-HSiOH, and trans-HSiOH. J. Phys. Chem. A 102, 1394CrossRefGoogle Scholar
  71. 71.
    Grev, R. S. and Schaefer III, H. F. (1992) Thermochemistry of CHn, SiHn (n = 0−4), and the cations SiH+, SiH2+, and SiH3+: A converged quantum mechanical approach, J. Chem. Phys. 97, 8389CrossRefGoogle Scholar
  72. 72.
    Woon, D. E. and Dunning Jr., T. H. (1995) Gaussian basis sets for use in correlated molecular calculations. 5. Core-valence basis sets for boron through neon, J. Chem. Phys. 103, 4572CrossRefGoogle Scholar
  73. 73.
    Peterson, K. A., Wilson, A. K., Woon, D. E., and Dunning Jr., T. H. (1997) Benchmark calculations with correlated molecular wave functions. 12. Core correlation effects on the homonuclear diatomic molecules B2-F2, Theor. Chem. Acc. 97, 251CrossRefGoogle Scholar
  74. 74.
    Hehre, W. J., Radom, L., von Ragué Schleyer, P., and Pople, J. A. (1986) Ab Initio Molecular Orbital Theory. J. Wiley and Sons, New York.Google Scholar
  75. 75.
    Martin, J. M. L. and Uzan, O. (1998) Basis set convergence in second-row compounds. The importance of core polarization functions, Chem. Phys. Lett. 282, 16CrossRefGoogle Scholar
  76. 76.
    Martin, J. M. L. “A fully ab initio quartic force field of spectroscopic quality for SO3”, Spectrochimica Acta A, in press (special issue entitled Theoretical Spectroscopy: State of the Science, eds. au]M. Head-Gordon and T. J. Lee)Google Scholar
  77. 77.
    Bauschlicher Jr., C. W. and Partridge, H. (1995) The sensitivity of B3LYP atomization energies to the basis set and a comparison of basis set requirements for CCSD(T) and B3LYP, Chem. Phys. Lett. 240, 533CrossRefGoogle Scholar
  78. 78.
    Curtiss, L. A., Jones, C., Trucks, G. W., Raghavachari, K., and Pople, J. A. (1990) Gaussian-1 theory of molecular energies for second-row compounds, J. Chem. Phys. 93, 2537CrossRefGoogle Scholar
  79. 79.
    Pople, J. A., Head-Gordon, M., Fox, D. J., Raghavachari, K., and Curtiss, L. A. (1989) Gaussian-1 theory: a general procedure for prediction of molecular energies, J. Chem. Phys. 90, 5622CrossRefGoogle Scholar
  80. 80.
    Müller, W., Flesch, J., and Meyer, W. (1984) Treatment of intershell correlation effects in ab initio calculations by use of core polarization potentials. Method and application to alkali and alkaline earth atoms, J. Chem. Phys. 80, 3297CrossRefGoogle Scholar
  81. 81.
    Bauschlicher Jr., C. W. and Ricca, A. (1998) Atomization energies of SO and SO2; basis set extrapolation revisited, J. Phys. Chem. A, in press.Google Scholar
  82. 82.
    Papoušek, D. and Aliev, M. R. Molecular Vibrational-Rotational Spectra (Elsevier, Amsterdam, 1982).Google Scholar
  83. 83.
    Truhlar, D. G. and Isaacson, A. D. (1991) Simple perturbation theory estimates of equilibrium constants from force fields, J. Chem. Phys. 94, 357 and references therein.CrossRefGoogle Scholar
  84. 84.
    Pople, J. A., Schlegel, H. B., Krishnan, R., DeFrees, D. J., Binkley, J. S., Frisch, M. J., Whiteside, R. A., Hout, R. F., Hehre, W. J., (1981) Molecular orbital study of vibrational frequencies, Int. J. Quantum Chem. Symp. 15, 269Google Scholar
  85. 85.
    Grev, R. S., Janssen, C. L., and Schaefer III, H. F. (1991) Concerning zero-point vibrational energy corrections to electronic energies, J. Chem. Phys. 95, 5128CrossRefGoogle Scholar
  86. 86.
    Scott, A. P. and Radom, L. (1996) Harmonic vibrational frequencies: an evaluation of Hartree-Fock, Møller-Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors, J. Phys. Chem. 100, 16502CrossRefGoogle Scholar
  87. 87.
    Pople, J. A., Scott, A. P., Wong, M. W., and Radom, L. (1993) Scaling factors for obtaining fundamental vibrational frequencies and zero-point energies from HF/6-31G* and MP2/6-31G* harmonic frequencies, Israel J. Chem. 33, 345Google Scholar
  88. 88.
    Martin, J. M. L. and Taylor, P. R. (1996) The geometry, vibrational frequencies, and total atomization energy of ethylene. A calibration study, Chem. Phys. Lett. 248, 336CrossRefGoogle Scholar
  89. 89.
    Martin, J. M. L. and Lee, T. J. (1996) The atomization energy and proton affinity of NH3. An ab initio calibration study, Chem. Phys. Lett. 258, 136CrossRefGoogle Scholar
  90. 90.
    Martin, J. M. L. and Taylor, P. R. (1997) Benchmark quality total atomization energies of small polyatomic molecules, J. Chem. Phys. 106, 8620CrossRefGoogle Scholar
  91. 91.
    Martin, J. M. L., Lee, T. J., Taylor, P. R., and François, J. P. (1995) The anharmonic force field of ethylene by means of accurate ab initio calculations, J. Chem. Phys. 103, 2589CrossRefGoogle Scholar
  92. 92.
    Martin, J. M. L. and Lee, T. J. (1996) Accurate ab initio quartic force field and vibrational frequencies of the NH4+ ion and its deuterated forms, Chem. Phys. Lett. 258, 129CrossRefGoogle Scholar
  93. 93.
    Martin, J. M. L., Lee, T. J., and Taylor, P. R. (1998) A purely ab initio spectroscopic quality quartic force field for acetylene, J. Chem. Phys. 108, 676CrossRefGoogle Scholar
  94. 94.
    Persson, B. J., Taylor, P. R., and Martin, J. M. L. (1998) Ab initio calibration study of the heat of formation, geometry, and anharmonic force field of fluoroacetylene, J. Phys. Chem. A 102, 2483CrossRefGoogle Scholar
  95. 95.
    Huber, K. P., and Herzberg, G. (1979) Constants of Diatomic Molecules. Van Nostrand Reinhold, New York.Google Scholar
  96. 96.
    Lee, C., Yang, W., and Parr, R. G. (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785CrossRefGoogle Scholar
  97. 97.
    Martin, J. M. L., El-Yazal, J., and François, J. P. (1995) Basis set convergence and performance of density functional theory including exact exchange contributions for geometries and harmonic frequencies, Mol. Phys. 86, 1437CrossRefGoogle Scholar
  98. 98.
    Martin, J. M. L., François, J. P., and Gijbels, R. (1991) On the effect of centrifugal stretching on the rotational partition function of an asymmetric top, J. Chem. Phys. 95, 8374CrossRefGoogle Scholar
  99. 99.
    Martin, J. M. L., François, J. P., and Gijbels, R. (1992) First principles computation of thermochemical properties beyond the harmonic approximation. 1. Method and application to the water molecule and its isotopomers, J. Chem. Phys. 76, 7633CrossRefGoogle Scholar
  100. 100.
    Topper, R. Q., Zhang, Q., Liu, Y. P., and Truhlar, D. G. (1993) Quantum steam tables. Free energy calculations for H2O, D2O, H2S, and H2Se by adaptively optimized Monte Carlo Fourier path integrals, J. Chem. Phys. 98, 4991 and references therein.CrossRefGoogle Scholar
  101. 101.
    Boys, S. F. and Bernardi, F. (1970) The calculation of small molecular interactions by the differences of several total energies. Some procedures with reduced errors, Mol. Phys. 19, 553CrossRefGoogle Scholar
  102. 102.
    Wells, B. H. and Wilson, S. (1983) Van Der Waals interaction potentials: many-body basis set superposition effects, Chem. Phys. Lett. 101, 429CrossRefGoogle Scholar
  103. 103.
    Martin, J. M. L., François, J. P., and Gijbels, R. (1989) Combined bond-polarization basis sets for accurate determination of dissociation energies. 3. Basis set superposition error in polyatomic systems, Theor. Chim. Acta 76, 195CrossRefGoogle Scholar
  104. 104.
    Parasuk, V., Almlöf, J., DeLeeuw, B., (1991) Basis set superposition errors in tightly bound systems, Chem. Phys. Lett. 176, 1CrossRefGoogle Scholar
  105. 105.
    Taylor, P. R. (1992) Accurate calculations and calibration, in Lecture Notes in Quantum Chemistry (Roos, B. O., Ed.); Lecture Notes in Chemistry 58; Springer, Berlin, pp. 325–415.CrossRefGoogle Scholar
  106. 106.
    Visscher, L., Lee, T. J., and Dyall, K. G. (1996) Formulation and implementation of a relativistic unrestricted coupled-cluster method including noniterative connected triples, J. Chem. Phys. 105, 8769 and references therein.CrossRefGoogle Scholar
  107. 107.
    Pyykkö, P., (1988) Relativistic effects in structural chemistry, Chem. Rev. 88, 563CrossRefGoogle Scholar
  108. 108.
    Sadlej, A. J. (1995) Methods of relativistic quantum chemistry, in Lecture Notes in Quantum Chemistry II (Roos, B. O., Ed.), Lecture Notes in Chemistry 64; Springer, Berlin, p. 203.CrossRefGoogle Scholar
  109. 109.
    Pyykkö, P. (1978) Relativistic quantum chemistry, Adv. Quantum Chem. 11, 353CrossRefGoogle Scholar
  110. 110.
    Cowan, R. D. and Griffin, M. (1976) Approximate relativistic corrections to atomic radial wave-functions, J. Opt. Soc. Am. 66, 1010CrossRefGoogle Scholar
  111. 111.
    Martin, R. L. (1983) All-electron relativistic calculations on AgH. An investigation of the Cowan-Griffin operator in a molecular species, J. Phys. Chem. 87, 750CrossRefGoogle Scholar
  112. 112.
    Gdanitz, R. J. and Ahlrichs, R. (1988) The averaged coupled-pair functional (ACPF): a size-extensive modification of MR CI(SD), Chem. Phys. Lett. 143, 413CrossRefGoogle Scholar
  113. 113.
    Stevens, W. J., Basch, H., Krauss, M., Jasien, P., (1992) Relativistic compact effective potentials and efficient shared-exponent basis sets for the third-, fourth-, and fifth-row atoms, Can. J. Chem 70, 612; T. R. Cundari and W. J. Stevens, (1993) Effective core potential methods for the lanthanides, J. Chem. Phys. 98, 5555CrossRefGoogle Scholar
  114. 114.
    Hay, P. J. and Wadt, W. R. (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi, J. Chem. Phys. 82, 270, 284, 299CrossRefGoogle Scholar
  115. 115.
    Collins, C. L. and Grev, R. S. (1998) Relativistic effects in silicon chemistry: Are the experimental heats of formation of the silicon atom and SiH4 compatible?, J. Chem. Phys. 108, 5465CrossRefGoogle Scholar
  116. 116.
    Samzow, R., Heß, B. A., and Jansen, G. (1992) The two-electron terms of the no-pair Hamiltonian, J. Chem. Phys. 96, 1227 and references therein.CrossRefGoogle Scholar
  117. 117.
    Richards, W. G., Trivedi, H. P., and Cooper, D. L. (1981) Spin-orbit coupling in molecules. Clarendon Press, Oxford.Google Scholar
  118. 118.
    Heß, B. A., Marian, C. M., and Peyerimhoff, S. D. (1995) Ab Initio Calculation of Spin-Orbit Effects in Molecules Including Electron Correlation, in Modern Electronic Structure Theory, Vol. 1, (Yarkony, D. R., Ed.); World Scientific, Singapore, p. 152–278.CrossRefGoogle Scholar
  119. 119.
    Chase Jr., M. W., Davies, C. A., Downey Jr., J. R., Frurip, D. J., McDonald, R. A., and Syverud, A. N. JANAF thermochemical tables, 3rd edition, (1985), J. Phys. Chem. Ref. Data 14,supplement 1Google Scholar
  120. 120.
    Feller, D. (1992) Application of systematic sequences of wave functions to the water dimer, J. Chem. Phys. 96, 6104CrossRefGoogle Scholar
  121. 121.
    Moncrieff, D. and Wilson, S. (1995) Distributed Gaussian basis sets — description of the Hartree-Fock ground state energies of N2, CO and BF using s-and p-type Gaussian functions, Mol. Phys. 85, 103; Kobus, J. (1993) Finite-difference versus finite-element methods, Chem. Phys. Lett. 202, 7.CrossRefGoogle Scholar
  122. 122.
    Kobus, J., Moncrieff, D., and Wilson, S. (1995) A comparison of finite basis set and finite difference Hartree-Fock calculations for the BF, AlF and GaF molecules, Mol. Phys. 86, 1315.CrossRefGoogle Scholar
  123. 123.
    Martin, J. M. L. and Taylor, P. R. (1998) Revised heat of formation for gaseous boron: Basis set limit ab initio binding energies of BF3 and BF, J. Phys. Chem. A 102, 2995CrossRefGoogle Scholar
  124. 124.
    Montgomery Jr., J. A., Ochterski, J. W., and Petersson, G. A. (1994) A complete basis set model chemistry. IV. An improved atomic pair natural orbital method, J. Chem. Phys. 101, 5900 and references thereinCrossRefGoogle Scholar
  125. 125.
    Martin, J. M. L. (1996) The total atomization energy and heat of formation of HCN(g), Chem. Phys. Lett. 259, 679CrossRefGoogle Scholar
  126. 126.
    Lee, T. J. and Dateo, C. E. (1995) The heat of formation of HNO, J. Chem. Phys. 103, 9110; Dixon. R. N., (1996) The heats of formation of HNO and of DNO, J. Chem. Phys. 104, 6905CrossRefGoogle Scholar
  127. 127.
    Schwartz, C. Estimating convergence rates of variational calculations (1963) In Methods in Computational Physics 2 (Alder, B. J., Ed.) Academic Press, New York.Google Scholar
  128. 128.
    Hill, R. N. (1985) Rates of convergence and error estimation formulas for the Rayleigh-Ritz variational method, J. Chem. Phys. 83, 1173CrossRefGoogle Scholar
  129. 129.
    Kutzelnigg, W. and Morgan III, J. D., (1992) Rates of convergence of the partial-wave expansions of atomic correlation energies, J. Chem. Phys. 96, 4484; erratum (1992) 97, 8821CrossRefGoogle Scholar
  130. 130.
    Abramowitz, M. and Stegun, I. A. Handbook of Mathematical Functions (Dover, New York, 1972).Google Scholar
  131. 131.
    Martin, J. M. L. (1996) Ab initio total atomization energies of small molecules — towards the basis set limit, Chem. Phys. Lett. 259, 669CrossRefGoogle Scholar
  132. 132.
    Klopper, W. (1995) Limiting values for Møller-Plesset second-order correlation energies of polyatomic systems: a benchmark study on Ne, HF, H2O, N2 and HeHe, J. Chem. Phys. 102, 6168CrossRefGoogle Scholar
  133. 133.
    Wilson, A. K. and Dunning Jr., T. H. (1997) Benchmark calculations with correlated molecular wave functions. 10. Comparison with “exact” MP2 calculations on Ne, HF, H2O, and N2, J. Chem. Phys. 106, 8718CrossRefGoogle Scholar
  134. 134.
    Müller, H., Kutzelnigg, W., and Noga, J. (1997) A CCSD(T)-R12 study of the ten-electron systems Ne, F, HF, H2O, NH3, NH4+ and CH4, Mol. Phys. 92, 535CrossRefGoogle Scholar
  135. 135.
    Halkier, A., Helgaker, T., Jørgensen, P., Klopper, W., Koch, H., Olsen, J., and Wilson, A. K. (1998) Basis set convergence in correlated calculations on Ne, N2, and H2O, Chem. Phys. Lett. 286, 243CrossRefGoogle Scholar
  136. 136.
    Helgaker, T., Klopper, W., Koch, H., and Noga, J. (1997) Basis-set convergence of correlated calculations on water, J. Chem. Phys. 106, 9639CrossRefGoogle Scholar
  137. 137.
    Martin, J. M. L. (1997) Coupling between the convergence behavior of basis set and electron correlation: a quantitative study, Theor. Chem. Acc. 97, 227CrossRefGoogle Scholar
  138. 138.
    Martin, J. M. L. (1997) Benchmark ab initio calculations of the total atomization energies of the first-row hydrides AHn (A=Li-F), Chem. Phys. Lett. 273, 98CrossRefGoogle Scholar
  139. 139.
    Feller, D. and Peterson, K. A. (1998) An examination of intrinsic errors in electronic structure methods using the EMSL computational results database and the G2 set, J. Chem. Phys. 108, 154CrossRefGoogle Scholar
  140. 140.
    Mayer, P. M., Parkinson, C. J., Smith, D. M., and Radom, L. (1998) An assessment of theoretical procedures for the calculation of reliable free radical thermochemistry. A recommended new procedure, J. Chem. Phys. 108, 604CrossRefGoogle Scholar
  141. 141.
    Raghavachari, K., (1985) Basis set and electron correlation effects on the electron affinities of first row atoms, J. Chem. Phys. 82, 4142CrossRefGoogle Scholar
  142. 142.
    Noro, T., Yoshimine, M., Sekiya, M., and Sasaki, F. (1991) Ab initio determination of accurate electron affinities of B, C, O, and F, Phys. Rev. Lett. 66, 1157CrossRefGoogle Scholar
  143. 143.
    Bauschlicher Jr., C. W., Langhoff, S. R., Partridge, H., and Taylor, P. R. (1986) On the electron affinity of the oxygen atom, J. Chem. Phys. 85, 3407CrossRefGoogle Scholar
  144. 144.
    Bauschlicher Jr., C. W. and Taylor, P. R. (1986) Benchmark full CI calculations on H2O, F, and F, J. Chem. Phys. 85, 2779CrossRefGoogle Scholar
  145. 145.
    Handbook of Chemistry and Physics, 78th Edition (CRC Press, Boca Raton, FL, 1997), p. 10–187Google Scholar
  146. 146.
    Desai, P. D. (1986) Thermodynamic properties of iron and silicon, J. Phys. Chem. Ref. Data 15, 967CrossRefGoogle Scholar
  147. 147.
    Ochterski, J.A., Petersson, G.A., Wiberg, K.B., (1995) A comparison of model chemistries, J. Am. Chem. Soc. 117, 11299CrossRefGoogle Scholar
  148. 148.
    Martin, J. M. L., Baldridge, K. K., and Lee, T. J. (1998) An accurate ab initio anharmonic force field for SiH4: towards a revised heat of formation of Si(g) (to be published).Google Scholar
  149. 149.
    Gunn, S. R. and Green, L. G. (1961) The heats of formation of some unstable gaseous hydrides, J. Phys. Chem. 65, 779CrossRefGoogle Scholar
  150. 150.
    Rossini, F. D., et al., Circular of the National Bureau of Standards Nr. 500 (1952), quoted in Ref. [149].Google Scholar
  151. 151.
    Storms, E. and Mueller, B. (1977) Phase relationships and thermodynamic properties of transition metal borides. I. The molybdenum-boron system and elemental boron, J. Phys. Chem. 81, 318CrossRefGoogle Scholar
  152. 152.
    Ruščić, B., Mayhew, C.A., and Berkowitz, J. (1988) Photoionization studies of (BH3)n (n = 1,2), J. Chem. Phys. 88, 5580CrossRefGoogle Scholar
  153. 153.
    Cox, J.D., Wagman, D.D., and Medvedev, V.A. (1989) CODATA key values for thermodynamics. Hemisphere, New York.Google Scholar
  154. 154.
    Schlegel, H. B. and Harris, S. J. (1994) Thermochemistry of BHmCln Calculated at the G2 level of theory, J. Phys. Chem. 98, 11178CrossRefGoogle Scholar
  155. 155.
    Gillespie, R. J. (1998) Covalent and ionic molecules: why are BeF2 and AlF3 high melting point solids whereas BF3 and SiF4 are gases?, J. Chem. Educ. 75, 923–925CrossRefGoogle Scholar
  156. 156.
    Pak, Y. and Woods, R. C. (1997) Anharmonic force fields and spectroscopic properties of BF3 and CF3+ using the coupled cluster method, J. Chem. Phys. 106, 6424CrossRefGoogle Scholar
  157. 157.
    Stanton, J. F., Gauss, J., Watts, J. D., Lauderdale, W., and Bartlett, R. J. (1996) ACES II, an ab initio program system, incorporating the MOLECULE vectorized molecular integral program by Almlöf, J., and Taylor, P. R., and a modified version of the ABACUS integral derivative package by Helgaker, T., Jensen, H. J. Aa., Jørgensen, P., Olsen, J., and Taylor, P. R.Google Scholar
  158. 158.
    Frisch, M. J., Trucks, G. W., Schlegel, H. B., Gill, P. M. W., Johnson, B. G., Robb, M. A., Cheeseman, J. R., Keith, T., Petersson, G. A., Montgomery, J. A., Raghavachari, K., Al-Laham, M. A., Zakrzewski, V. G., Ortiz, J. V., Foresman, J. B., Cioslowski, J., Stefanov, B. B., Nanayakkara, A., Challacombe, M., Peng, C. Y., Ayala, P. Y., Chen, W., Wong, M. W., Andres, J. L., Replogle, E. S., Gomperts, R., Martin, R. L., Fox, D. J., Binkley, J. S, DeFrees, D. J., Baker, J., Stewart, J. P., Head-Gordon, M., Gonzalez, C., and Pople, J. A. (1995) GAUSSIAN 94 Revision D.4 (Gaussian, Inc., Pittsburgh).Google Scholar
  159. 159.
    Werner, H.-J., and Knowles, P. J. (1998) MOLPRO 97.3, a package of ab initio programs, with contributions from Almlöf, J., Amos, R. D., Berning, A., Cooper, D. L., Deegan, M. J. O., Dobbyn, A. J., Eckert, F., Elbert, S. T., Hampel, C., Lindh, R., Lloyd, A. W., Meyer, W., Nicklass, A., Peterson, K. A., Pitzer, R. M., Stone, A. J., Taylor, P. R., Mura, M. E., Pulay, P., Schütz, M, Stoll, H., Thorsteinsson, T.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Jan M. L. Martin
    • 1
  1. 1.Department of Organic ChemistryWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations