Advertisement

Extracting Thermochemical Information from Ab Initio Data

  • Karl K. Irikura
Part of the NATO Science Series book series (ASIC, volume 535)

Abstract

Demand for thermochemical information is growing far faster than new measurements can be made. Concurrently, dramatic improvements in computer hardware, software, and electronic structure theory make ab initio computations increasingly attractive and accessible for many chemical applications. As a result, it is now difficult to stay abreast of the field of molecular energetics without understanding the most common methods of computational thermochemistry. The goal of this chapter is to identify and discuss the most important issues to consider when evaluating or using ab initio predictions of molecular thermochemistry.

Keywords

Density Functional Theory American Chemical Society Configuration Interaction Bond Dissociation Energy Atomization Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Irikura, K.K. and Frurip, D.J. (eds.) (1998) Computational Thermochemistry: Prediction and Estimation of Molecular Thermodynamics (ACS Symposium Series 677), American Chemical Society, Washington, DC.Google Scholar
  2. 2.
    Pedley, J.B. (1994) Thermochemical Data and Structures of Organic Compounds, vol. 1, Thermodynamics Research Center, College Station, Texas.Google Scholar
  3. 3.
    Mallard, W.G. and Linstrom, P.J. (eds.) (1998) NIST Chemistry WebBook (NIST Standard Reference Database Number 69), National Institute of Standards and Technology, Gaithersburg, Maryland (http://webbook.nist.gov).Google Scholar
  4. 4.
    Pedley, J.B. (1972) Computer analysis of thermochemical data; CATCH tables, Brighton, England.Google Scholar
  5. 5.
    Martin, J.M.L. and Taylor, P.R. (1998) Revised heat of formation for gaseous boron: basis set limit ab initio binding energies of BF3 and BF, J. Phys. Chem. A 102, 2995–2998.CrossRefGoogle Scholar
  6. 6.
    Benson, S.W. (1976) Thermoclwmical Kinetics (2nd ed.), Wiley, New York.Google Scholar
  7. 7.
    Cohen, N. (1996) Revised group additivity values for enthalpies of formation (at 298 K) of C-H and C-H-O compounds, J. Phys. Chem. Ref. Data 25, 1411–1481.CrossRefGoogle Scholar
  8. 8.
    Benson, S.W. and Cohen, N. (1998) Current status of group additivity, in K.K. Irikura and D.J. Frurip (eds.), Computational Thermochemistry: Prediction and Estimation of Molecular Thermodynamics (ACS Symposium Series 677), American Chemical Society, Washington, DC, pp. 20–46.CrossRefGoogle Scholar
  9. 9.
    Colegrove, B.T. and Thompson, T.B. (1997) Ab initio heats of formation for chlorinated hydrocarbons: allyl chloride, cis-and trans-1-chloropropene, and vinyl chloride, J. Chem. Phys. 106, 1480–1490.CrossRefGoogle Scholar
  10. 10.
    Politzer, P., Seminario, J.M., and Concha, M.C. (1998) Energetics of ammonium dinitramide decomposition steps, J. Mol. Struct. (Theochem) 427, 123–129.CrossRefGoogle Scholar
  11. 11.
    Hehre, W.J., Radom, L., Schleyer, P.v.R., and Pople, J.A. (1986) Ab Initio Molecular Orbital Theory, Wiley, New York.Google Scholar
  12. 12.
    Irikura, K.K. and Frurip, D.J. (1998) Computational thermochemistry, in K.K. Irikura and D.J. Frurip (eds.), Computational Thermochemistry: Prediction and Estimation of Molecular Thermodynamics (ACS Symposium Series 677), American Chemical Society, Washington, DC, pp. 2–18.CrossRefGoogle Scholar
  13. 13.
    Bowen, J.P. and Allinger, N.L. (1991) Molecular mechanics: the art and science of parameterization, Rev. Comput. Chem. 2, 81–97.CrossRefGoogle Scholar
  14. 14.
    Thiel, W. (1996) Perspectives on semiempirical molecular orbital theory, Adv. Chem. Phys. 93, 703–757.CrossRefGoogle Scholar
  15. 15.
    Thiel, W. (1998) Thermochemistry from semiempirical molecular orbital theory, in K.K. Irikura and D.J. Frurip (eds.), Computational Thermochemistry: Prediction and Estimation of Molecular Thermodynamics (ACS Symposium Series 677), American Chemical Society, Washington, DC, pp. 142–161.CrossRefGoogle Scholar
  16. 16.
    Szabo, A. and Ostlund, N.S. (1982) Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (1st (revised) ed.), McGraw-Hill, New York.Google Scholar
  17. 17.
    Martin, J.M.L. (1994) On the performance of correlation consistent basis sets for the calculation of total atomization energies, geometries, and harmonic frequencies, J. Chem. Phys. 100, 8186–8193.CrossRefGoogle Scholar
  18. 18.
    Feller, D. and Peterson, K.A. (1998) An examination of intrinsic errors in electronic structure methods using the EMSL computational results database and the G2 set, J. Chem. Phys. 108, 154–176.CrossRefGoogle Scholar
  19. 19.
    Hassanzadeh, P. and Irikura, K.K. (1998) Vibrational anharmonicities from estimated fourth derivatives: Diatomic molecules, J. Comput. Chem. 19, 1315–1324.CrossRefGoogle Scholar
  20. 20.
    Crawford, T.D., Stanton, J.F., Allen, W.D., and Schaefer, H.F., III. (1997) Hartree-Fock orbital instability envelopes in highly correlated single-reference wavefunctions, J. Chem. Phys. 107, 10626–10632.CrossRefGoogle Scholar
  21. 21.
    Stanton, J.F. (1994) On the extent of spin contamination in open-shell coupled-cluster wave functions, J. Chem. Phys. 101, 371–374.CrossRefGoogle Scholar
  22. 22.
    Bartlett, R.J. and Purvis, G.D. (1978) Many-body perturbation theory, coupled-pair many-electron theory, and the importance of quadruple excitations for the correlation problem, Int. J. Quantum Chem. 14, 561–581.CrossRefGoogle Scholar
  23. 23.
    Raghavachari, K., Trucks, G.W., Pople, J.A., and Head-Gordon, M. (1989) A fifth-order perturbation comparison of electron correlation theories, Chem. Phys. Lett. 157, 479–483.CrossRefGoogle Scholar
  24. 24.
    Scuseria, G.E. and Lee, T.J. (1990) Comparison of coupled-cluster methods which include the effects of connected triple excitations, J. Chem. Phys. 93, 5851–5855.CrossRefGoogle Scholar
  25. 25.
    Parr, R.G. and Yang, W. (1989) Density-Functional Theory of Atoms and Molecules, Oxford University, New York.Google Scholar
  26. 26.
    Parr, R.G. and Yang, W.T. (1995) Density-functional theory of the electronic-structure of molecules, Annu. Rev. Phys. Chem. 46, 701–728.CrossRefGoogle Scholar
  27. 27.
    Baerends, E.J. and Gritsenko, O.V. (1997) A quantum chemical view of density functional theory, J. Phys. Chem. A 101, 5383–5403.CrossRefGoogle Scholar
  28. 28.
    Baker, J., Scheiner, A., and Andzelm, J. (1993) Spin contamination in density functional theory, Chem. Phys. Lett. 216, 380–388.CrossRefGoogle Scholar
  29. 29.
    Murray, C.W., Handy, N.C., and Amos, R.D. (1993) A study of O3, S3, CH2, and Be2 using Kohn-Sham theory with accurate quadrature and large basis sets, J. Chem. Phys. 98, 7145–7151.CrossRefGoogle Scholar
  30. 30.
    Becke, A.D. (1993) Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98, 5648–5652.CrossRefGoogle Scholar
  31. 31.
    Lee, C., Yang, W., and Parr, R.G. (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37, 785–789.CrossRefGoogle Scholar
  32. 32.
    Bauschlicher, C.W., Jr. and Partridge, H. (1995) The sensitivity of B3LYP atomization energies to the basis set and a comparison of basis set requirements for CCSD(T) and B3LYP, Chem. Phys. Lett. 240, 533–540.CrossRefGoogle Scholar
  33. 33.
    Curtiss, L.A., Raghavachari, K., Redfern, P.C., and Pople, J.A. (1997) Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation, J. Chem. Phys. 106, 1063–1079.CrossRefGoogle Scholar
  34. 34.
    Redfern, P.C., Blaudeau, J.P., and Curtiss, L.A. (1997) Assessment of modified Gaussian-2 (G2) and density functional theories for molecules containing third-row atoms Ga-Kr, J. Phys. Chem. A 101, 8701–8705.CrossRefGoogle Scholar
  35. 35.
    Karplus, M. and Porter, R.N. (1970) Atoms & Molecules, Benjamin/Cummins, Menlo Park, California.Google Scholar
  36. 36.
    McQuarrie, D.A. (1976) Statistical Mechanics, HarperCollins, New York.Google Scholar
  37. 37.
    Irikura, K.K. (1998) Essential statistical thermodynamics, in K.K. Irikura and D.J. Frurip (eds.), Computational Thermochemistty: Prediction and Estimation of Molecular Thermodynamics (ACS Symposium Series 677), American Chemical Society, Washington, DC, pp. 402–418.CrossRefGoogle Scholar
  38. 38.
    Johnson, R.D., III and Hudgens, J.W. (1996) Structural and thermochemical properties of hydroxymethyl (CH2OH) radicals and cations derived from observations of B2A′(3p) — X 2A″ electronic spectra and from ab initio calculations, J. Phys. Chem. 100, 19874–19890.CrossRefGoogle Scholar
  39. 39.
    Botschwina, P., Seeger, S., Mladenovic, M., Schulz, B., Horn, M., Schmatz, S., Flugge, J., and Oswald, R. (1995) Quantum-chemical investigations of small molecular anions, Int. Rev. Phys. Chem. 14, 169–204.CrossRefGoogle Scholar
  40. 40.
    Muñoz-Caro, C. and Niño, A. (1997) Effect of anharmonicities on the thermodynamic properties of the water dimer, J. Phys. Chem. A 101, 4128–4135.CrossRefGoogle Scholar
  41. 41.
    Pople, J.A., Schlegel, H.B., Krishnan, R., Defrees, D.J., Binkley, J.S., Frisch, M.J., Whiteside, R.A., Hout, R.F., and Hehre. W.J. (1981) Molecular orbital studies of vibrational frequencies, Int. J. Quantum Chem. Symp. 15, 269–278.Google Scholar
  42. 42.
    Scott, A.P. and Radom, L. (1996) Harmonic vibrational frequencies: an evaluation of Hartree-Fock, Møller-Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors, J. Phys. Chem. 100, 16502–16513.CrossRefGoogle Scholar
  43. 43.
    Moore, C.E. (1971) Atomic Energy Levels, U.S. Govt. Printing Office, Washington, D.C.Google Scholar
  44. 44.
    Richards, W.G., Trivedi, H.P., and Cooper, D.L. (1981) Spin-orbit Coupling in Molecules, Clarendon, Oxford.Google Scholar
  45. 45.
    Koseki, S., Gordon, M.S., Schmidt, M.W., and Matsunaga, N. (1995) Main-group effective nuclear charges for spin-orbit calculations, J. Phys. Chem. 99, 12764–12772.CrossRefGoogle Scholar
  46. 46.
    Ermler, W.C., Ross, R.B., and Christiansen, P.A. (1991) Ab initio relativistic effective potentials with spin-orbit operators. VI. Fr through Pu, Int. J. Quantum Chem. 40, 829–846.CrossRefGoogle Scholar
  47. 47.
    Sousa, C., deJong, W.A., Broer, R., and Nieuwpoort, W.C. (1997) Theoretical characterization of the low-lying excited states of the CuCl molecule, J. Chem. Phys. 106, 7162–7169.CrossRefGoogle Scholar
  48. 48.
    Curtiss, L.A., McGrath, M.P., Blaudeau, J.-P., Davis, N.E., Binning, R.C., Jr., and Radom, L. (1995) Extension of Gaussian-2 theory to molecules containing third-row atoms Ga-Kr, J. Chem. Phys. 103, 6104–6112.CrossRefGoogle Scholar
  49. 49.
    Hassanzadeh, P. and Irikura, K.K. (1997) Nearly ab initio thermochemistry: the use of reaction schemes. Application to IO and HOI, J. Phys. Chem. A 101, 1580–1587.CrossRefGoogle Scholar
  50. 50.
    Zachariah, M.R. and Melius, C.F. (1998) Bond-additivity correction of ab initio computations for accurate prediction of thermochemistry, in K.K. Irikura and D.J. Frurip (eds.), Computational Thermochemistry: Prediction and Estimation of Molecular Thermodynamics (ACS Symposium Series 677), American Chemical Society, Washington, DC, pp. 162–175.CrossRefGoogle Scholar
  51. 51.
    Ibrahim, M.R. and Schleyer, P.v.R. (1985) Atom equivalents for relating ab initio energies to enthalpies of formation, J. Comput. Chem. 6, 157–167.CrossRefGoogle Scholar
  52. 52.
    Dewar, M.J.S. and O’Connor, B.M. (1987) Testing ab initio procedures: the 6-31G* model, Chem. Phys. Lett. 138, 141–145.CrossRefGoogle Scholar
  53. 53.
    Herndon, W.C. (1995) Hydrocarbon enthalpies of formation and ab initio calculations, Chem. Phys. Lett. 234, 82–86.CrossRefGoogle Scholar
  54. 54.
    Berry, R.J., Burgess, D.R.F., Jr., Nyden, M.R., Zachariah, M.R., and Schwartz, M. (1995) Halon thermochemistry: ab initio calculations of the enthalpies of formation of fluoromethanes, J. Phys. Chem. 99, 17145–17150.CrossRefGoogle Scholar
  55. 55.
    Mole, S.J., Zhou, X., and Liu, R. (1996) DFT study of enthalpy of formation. 1. Consistency of DFT energies and atom equivalents for converting DFT energies into enthalpies of formation, J. Phys. Chem. 100, 14665–14671.CrossRefGoogle Scholar
  56. 56.
    Katzer, G., Ernst, M.C., Sax, A.F., and Kalcher, J. (1997) Computational thermochemistry of medium-sized silicon hydrides, J. Phys. Chem. A 101, 3942–3958.CrossRefGoogle Scholar
  57. 57.
    Kafafi, S.A. and El-Gharkawy, E.-S.R.H. (1998) A simple coupling scheme between Hartree-Fock and local spin-density functional theories, J. Phys. Chem. A 102, 3202–3208.CrossRefGoogle Scholar
  58. 58.
    Becke, A.D. (1997) Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functional, J. Chem. Phys. 107, 8554–8560.CrossRefGoogle Scholar
  59. 59.
    Gordon, M.S. and Truhlar, D.G. (1986) Scaling all correlation energy in perturbation theory calculations of bond energies and barrier heights, J. Am. Chem. Soc. 108, 5412–5419.CrossRefGoogle Scholar
  60. 60.
    Gordon, M.S., Nguyen, K.A., and Truhlar, D.G. (1989) Parameters for scaling the correlation energy of the bonds Si-H, P-H, S-H, and Cl-H and application to the reaction of silyl radical with silane, J. Phys. Chem. 93, 7356–7358.CrossRefGoogle Scholar
  61. 61.
    Siegbahn, P.E.M., Blomberg, M.R.A., and Svensson, M. (1994) PCI-X, a parametrized correlation method containing a single adjustable parameter X, Chem. Phys. Lett. 223, 35–45.CrossRefGoogle Scholar
  62. 62.
    Blomberg, M.R.A. and Siegbahn, P.E.M. (1998) Calculating bond strengths for transition metal complexes, in K.K. Irikura and D.J. Frurip (eds.), Computational Thermochemistry: Prediction and Estimation of Molecular Thermodynamics (ACS Symposium Series 677), American Chemical Society, Washington, DC, pp. 197–211.CrossRefGoogle Scholar
  63. 63.
    Pople, J.A., Head-Gordon, M., Fox, D.J., Raghavachari, K., and Curtiss, L.A. (1989) Gaussian-1 theory: a general procedure for prediction of molecular energies, J. Chem. Phys. 90, 5622–5629.CrossRefGoogle Scholar
  64. 64.
    Curtiss, L.A., Jones, C., Trucks, G.W., Raghavachari, K., and Pople, J.A. (1990) Gaussian-1 theory of molecular energies for second-row compounds, J. Chem. Phys. 93, 2537–2545.CrossRefGoogle Scholar
  65. 65.
    Curtiss, L.A., Raghavachari, K., Trucks, G.W., and Pople, J.A. (1991) Gaussian-2 theory for molecular energies of first-and second-row compounds, J. Chem. Phys. 94, 7221–7230.CrossRefGoogle Scholar
  66. 66.
    Curtiss, L.A., Carpenter, J.E., Raghavachari, K., and Pople, J.A. (1992) Validity of additivity approximations used in GAUSSIAN-2 theory, J. Chem. Phys. 96, 9030–9034.CrossRefGoogle Scholar
  67. 67.
    Curtiss, L.A., Raghavachari, K., and Pople, J.A. (1993) Gaussian-2 theory using reduced Møller-Plesset orders, J. Chem. Phys. 98, 1293–1298.CrossRefGoogle Scholar
  68. 68.
    Curtiss, L.A. and Raghavachari, K. (1998) Computational methods for calculating accurate enthalpies of formation, ionization potentials, and electron affinities, in K.K. Irikura and D.J. Frurip (eds.), Computational Thermochemistry: Prediction and Estimation of Molecular Thermodynamics (ACS Symposium Series 677), American Chemical Society, Washington, DC, pp. 176–196.CrossRefGoogle Scholar
  69. 69.
    Raghavachari, K., Stefanov, B.B., and Curtiss, L.A. (1997) Accurate thermochemistry for larger molecules: Gaussian-2 theory with bond separation energies, J. Chem. Phys. 106, 6764–6767.CrossRefGoogle Scholar
  70. 70.
    Mebel, A.M., Morokuma, K., and Lin, M.C. (1995) Modification of the Gaus-sian-2 theoretical model: The use of coupled-cluster energies, density-functional geometries, and frequencies, J. Client. Phys. 103, 7414–7421.Google Scholar
  71. 71.
    Froese, R.D.J., Humbel, S., Svensson, M., and Morokuma, K. (1997) IMOMO(G2MS): a new high-level G2-like method for large molecules and its applications to Diels-Alder reactions, J. Phys. Chem. A 101, 227–233.CrossRefGoogle Scholar
  72. 72.
    Gronert, S. (1996) The need for additional diffuse functions in calculations on small anions: the G2(DD) approach, Chem. Phys. Lett. 252, 415–418.CrossRefGoogle Scholar
  73. 73.
    Durant, J.L. and Rohlfing, C.M. (1993) Transition-state structures and energetics using Gaussian-2 theory, J. Chem. Phys. 98, 8031–8036.CrossRefGoogle Scholar
  74. 74.
    Bauschlicher, C.W. and Partridge, H. (1995) A modification of the Gaussian-2 approach using density functional theory, J. Chem. Phys. 103, 1788–1791.CrossRefGoogle Scholar
  75. 75.
    Bauschlicher, C.W. and Partridge, H. (1996) Erratum: a modification of the Gaussian-2 approach using density functional theory (vol 103, pg 1788, 1995), J. Chem. Phys. 105, 4398–4398.CrossRefGoogle Scholar
  76. 76.
    Curtiss, L.A., Raghavachari, K., and Pople, J.A. (1995) Gaussian-2 theory: use of higher-level correlation methods, quadratic configuration-interaction geometries, and 2nd-order Moller-Plesset zero-point energies, J. Chem. Phys. 103, 4192–4200.CrossRefGoogle Scholar
  77. 77.
    Curtiss, L.A., Redfern, P.C., Smith, B.J., and Radom, L. (1996) Gaussian-2 (G2) theory: reduced basis set requirements, J. Chem. Phys. 104, 5148–5152.CrossRefGoogle Scholar
  78. 78.
    Petersson, G.A., Bennett, A., Tensfeldt, T.G., Allaham, M.A., Shirley, W.A., and Mantzaris, J. (1988) A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the lst-row elements, J. Chem. Phys. 89, 2193–2218.CrossRefGoogle Scholar
  79. 79.
    Petersson, G.A. and Allaham, M.A. (1991) A complete basis set model chemistry. II. Open-shell systems and the total energies of the lst-row atoms, J. Chem. Phys. 94, 6081–6090.CrossRefGoogle Scholar
  80. 80.
    Petersson, G.A., Tensfeldt, T.G., and Montgomery, J.A., Jr. (1991) A complete basis set model chemistry. III. The complete basis set-quadratic configuration interaction family of methods, J. Chem. Phys. 94, 6091–6101.CrossRefGoogle Scholar
  81. 81.
    Montgomery, J.A., Ochterski, J.W., and Petersson, G.A (1994) A complete basis-set model chemistry. IV. An improved atomic pair natural orbital method, J. Chem. Phys. 101, 5900–5909.CrossRefGoogle Scholar
  82. 82.
    Ochterski, J.W., Petersson, G.A., and Montgomery, J.A. (1996) A complete basis set model chemistry. V. Extensions to six or more heavy atoms, J. Chem. Phys. 104, 2598–2619.CrossRefGoogle Scholar
  83. 83.
    Petersson, G.A. (1998) Complete Basis-Set Thermochemistry and Kinetics, in K.K. Irikura and D.J. Frurip (eds.), Computational Thermochemistry: Prediction and Estimation of Molecular Thermodynamics (ACS Symposium Series 677), American Chemical Society, Washington, DC, pp.Google Scholar
  84. 84.
    Kellogg, C.B. and Irikura, K.K. (1998) Gas phase thermochemistry of iron oxides and hydroxides: portrait of a super-efficient flame suppressant, J. Am. Chem. Soc., submitted.Google Scholar
  85. 85.
    Lias, S.G., Liebman, J.F., Levin, R.D., Kafafi, S.A., and Stein, S.E. (1994) Structures and Properties, vers. 2.02 (NIST Standard Reference Database 25), National Institute of Standards and Technology, Gaithersburg, Maryland.Google Scholar
  86. 86.
    Frenkel, M., Marsh, K.N., Wilhoit, R.C., Kabo, G J., and Roganov, G.N. (1994) Thermodynamics of Organic Compounds in the Gas State, vol. I, Thermodynamics Research Center, College Station, Texas.Google Scholar
  87. 87.
    Kelly, R.L. (1987) Atomic and ionic spectrum lines below 2000 Angstroms: hydrogen through krypton, J. Phys. Chem. Ref. Data 16,Suppl. 1.Google Scholar
  88. 88.
    Chase, M.W., Jr., Davies, CA., Downey, J.R., Jr., Frurip, D.J., McDonald, R.A., and Syverud, A.N. (1985) JANAF Thermochemical Tables, Third Edition, J. Phys. Chem. Ref. Data 14,Suppl. 1.Google Scholar
  89. 89.
    Irikura, K.K. (1998) Systematic errors in ab initio bond dissociation energies, J. Phys. Chem. A, submitted.Google Scholar
  90. 90.
    Pople, J.A., Luke, B.T., Frisch, M.J.. and Binkley, J.S. (1985) Theoretical thermochemistry. 1. Heats of formation of neutral AHn molecules (A = Li to Cl), J. Phys. Chem. 89, 2198–2203.CrossRefGoogle Scholar
  91. 91.
    Hehre, W.J., Ditchfield, R., Radom, L., and Pople, J.A. (1970) Molecular orbital theory of the electronic structure of organic compounds. V. Molecular theory of bond separation, J. Am. Chem. Soc. 92, 4796–4801.CrossRefGoogle Scholar
  92. 92.
    Lay, T.H. and Bozzelli, J.W. (1997) Enthalpies of formation and group additivity of alkyl peroxides and trioxides, J. Phys. Chem. A 101, 9505–9510.CrossRefGoogle Scholar
  93. 93.
    Lee, T.J. (1995) Ab initio characterization of triatomic bromine molecules of potential interest in stratospheric chemistry, J. Phys. Chem. 99, 15074–15080.CrossRefGoogle Scholar
  94. 94.
    Afeefy, H.Y. and Liebman, J.F. (1998) Estimation of the enthalpies of formation of organic compounds in the solid phase: The study of 2-acetoxybenzoic acid (aspirin) and its isomers, in K.K. Irikura and D.J. Frurip (eds.), Computational Thermochemistry: Prediction and Estimation of Molecular Thermodynamics (ACS Symposium Series 677), American Chemical Society, Washington, DC, pp.Google Scholar
  95. 95.
    Ho, P., Coltrin, M.E., Binkley, J.S., and Melius, C.F. (1985) A theoretical study of the heats of formation of SiHn, SiCln, and SiHnClm compounds, J. Phys. Chem. 89, 4647–4654.CrossRefGoogle Scholar
  96. 96.
    Su, M.D. and Schlegel, H.B. (1993) Heats of formation of SiHmCln calculated by ab initio molecular orbital methods, J. Phys. Chem. 97, 8732–8735.CrossRefGoogle Scholar
  97. 97.
    Berry, R.J., Burgess, D.R.F., Jr., Nyden, M.R., Zachariah, M.R., Melius, CF., and Schwartz, M. (1996) Halon thermochemistry: calculated enthalpies of formation of chlorofluoromethanes, J. Phys. Chem. 100, 7405–7410.CrossRefGoogle Scholar
  98. 98.
    Curtiss, L.A., Raghavachari, K., Redfern, P.C., and Stefanov, B.B. (1998) Assessment of complete basis set methods for computation of enthalpies of formation, J. Chem. Phys. 108, 692–697.CrossRefGoogle Scholar
  99. 99.
    Ho, P. and Melius, C.F. (1990) A theoretical study of the thermochemistry of SiFn and SiHnFm compounds and Si2F6, J. Phys. Chem. 94, 5120–5127.CrossRefGoogle Scholar
  100. 100.
    Melius, C.F. (1990) Thermochemical modeling: I. Application to decomposition of energetic materials, in S.N. Bulusu (ed.), Chemistry and Physics of Energetic Materials, Kluwer Academic, Dordrecht, pp. 21–49.CrossRefGoogle Scholar
  101. 101.
    Lee, T.J. and Taylor, P.R. (1989) A diagnostic for determining the quality of single-reference electron correlation methods, Int. J. Quantum Chem.: Quantum Chem. Symp. 23, 199–207.Google Scholar
  102. 102.
    Jayatilaka, D. and Lee, T.J. (1993) Open-shell coupled-cluster theory, J. Chem. Phys. 98, 9734–9747.CrossRefGoogle Scholar
  103. 103.
    Wilson, A.K., van Mourik, T., and Dunning, T.H. (1996) Gaussian-basis sets for use in correlated molecular calculations. VI. Sextuple-zeta correlation consistent basis-sets for boron through neon, J. Mol. Struct. (Theochem) 388, 339–349.Google Scholar
  104. 104.
    Martin, J.M.L. (1998) Calibration study of atomization energies of small polya-tomics, in K.K. Irikura and D.J. Frurip (eds.), Computational Thermochemistry: Prediction and Estimation of Molecular Thermodynamics (ACS Symposium Series 677), American Chemical Society, Washington, DC, pp. 212–236.CrossRefGoogle Scholar
  105. 105.
    Martin, J.M.L. and Lee, T.J. (1996) The atomization energy and proton affinity of NH3. An ab initio calibration study, Chem. Phys. Lett. 258, 136–143.CrossRefGoogle Scholar
  106. 106.
    Hildenbrand, D.L. and Lau, K.H. (1998) Thermochemistry of gaseous SiO(OH), SiO(OH)2, and SiO2 — comment, J. Chem. Phys. 108, 6535–6535.CrossRefGoogle Scholar
  107. 107.
    Kohn, W., Becke, A.D., and Parr, R.G. (1996) Density functional theory of electronic structure, J. Phys. Chem. 100, 12974–12980.CrossRefGoogle Scholar
  108. 108.
    Noga, J. and Bartlett, R.J. (1987) The full CCSDT model for molecular electronic structure, J. Chem. Phys. 86, 7041–7050.CrossRefGoogle Scholar
  109. 109.
    Scuseria, G.E. and Schaefer, H.F. (1988) A new implementation of the full CCSDT model for molecular electronic structure, Chem. Phys. Lett. 152, 382–386.CrossRefGoogle Scholar
  110. 110.
    Muller, H., Kutzelnigg, W., and Noga, J. (1997) A CCSD(T)-R12 study of the ten-electron systems Ne, F, HF, H2O, NH3, NH4 + and CH4, Mol. Phys. 92, 535–546.Google Scholar
  111. 111.
    Strain, M.C., Scuseria, G.E., and Frisch, M.J. (1996) Achieving linear scaling for the electronic quantum coulomb problem, Science 271, 51–53.CrossRefGoogle Scholar
  112. 112.
    Day, P.N., Jensen, J.H., Gordon, M.S., Webb, S.P., Stevens, W.J., Krauss, M., Garmer, D., Basch, H., and Cohen, D. (1996) An effective fragment method for modeling solvent effects in quantum mechanical calculations, J. Chem. Phys. 105, 1968–1986.CrossRefGoogle Scholar
  113. 113.
    Thiel, W. and Voityuk, A.A. (1996) Extension of MNDO to d orbitals: Parameters and results for the second-row elements and for the zinc group, J. Phys. Chem. 100, 616–626.CrossRefGoogle Scholar
  114. 114.
    Feller, D. (1996) The role of databases in support of computational chemistry calculations, J. Comput. Chem. 17, 1571–1586.Google Scholar
  115. 115.
    Tucker, S.C. and Truhlar, D.G. (1989) Dynamical formulation of transition state theory: variational transition states and semiclassical tunneling, in J. Bertrán and I.G. Csizmadia (eds.), New Theoretical Concepts for Understanding Organic Reactions (NATO ASI Ser.), (Vol. C267) Kluwer, Dordrecht, pp. 291–346.CrossRefGoogle Scholar
  116. 116.
    Duncan, W.T., Bell, R.L., and Truong, T.N. (1998) TheRate: Program for ab initio direct dynamics calculations of thermal and vibrational-state-selected rate constants, J. Comput. Chem. 19, 1039–1052.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Karl K. Irikura
    • 1
  1. 1.Physical and Chemical Properties DivisionNational Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations