Shock Tube Studies on the Stability of Polyatomic Molecules and the Determination of Bond Energies

  • Wing Tsang
Part of the NATO Science Series book series (ASIC, volume 535)


This paper is concerned with the determination of bond energies using the comparative rate single pulse shock tube technique. The relationships between high pressure unimolecular rate constants, equilibrium constants for reaction, the enthalpies of reaction and the heat of formation of individual radicals formed from the breaking of chemical bonds are developed. A detailed description of the physical phenomena and experimental procedures is given. The special aspects of comparative rate single pulse shock tube experiments are described. The treatment of data and in particular the dependence on a variety of ancillary information for the extraction of bond energies or radical heats of formation is illustrated with specific examples. A summary of the heats of formation of the organic radicals determined by this method will be presented and compared with determinations arrived at by other procedures. The results are generalized in the context of the high temperature stability of polyatomic organic molecules.


Equilibrium Constant Bond Energy Shock Tube Rate Expression Bond Dissociation Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Szwarc, M., (1950) The Determination of Bond Dissociation Energies by Pyrolytic Methods, Chem. Rev., 47, 75–1731CrossRefGoogle Scholar
  2. 2.
    O’Neal, H. E., Benson, S. W., “Thermochemistry of Free Radicals” in “Free Radicals” (Kochi, J., ed.) John Wiley and Sons, New York, 1973Google Scholar
  3. 3.
    McMillen, D. E. and Golden, D. M, (1982), Hydrocarbon Bond Dissociation Energies, Annu. Rev. Phys. Chem., 33, 493–532CrossRefGoogle Scholar
  4. 4.
    Berkowitz, J., Ellison, G. B., and Gutman, D., (1995) Three Methods to Measure Bond Dissociation Energies, J. Phys. Chem., 98, 2744–2765CrossRefGoogle Scholar
  5. 5.
    Benson, S.W., “Thermochemical Kinetics”, John Wiley and Sons, New York, 1974Google Scholar
  6. 6.
    Stull, D. R., Westrum, E. F., and Sinke, G. R., (1969) “The Chemical Thermodynamics of Organic Compounds”, John Wiley and Sons, New York, NYGoogle Scholar
  7. 7.
    Szwarc, M. (1948) The C-H Bond Dissociation Energy in Toluene and Xylenes, J. Chem. Phys., 16, 128–136CrossRefGoogle Scholar
  8. 8.
    Schissler, D. O. and Stevenson, D. P. (1954), The Benzyl-Hydrogen Bond Dissociation Energy from Electron Impact, J. Chem. Phys., 22, 151–152Google Scholar
  9. 9.
    Vincenti, W. G., and Kruger, C. H., (1967) “Introduction to Physical Gas Dynamics” John Wiley and Sons, New YorkGoogle Scholar
  10. 10.
    Tsang, W., (1980) “Comparative Rate Single Pulse Shock Tube Studies on the Thermal Stability of Polyatomic Molecules”, in “Shock Waves in Chemistry” (ed. Lifshitz, A.) Marcel Dekker, New York, NY 59–129Google Scholar
  11. 11.
    Tsang, W. and Lifshitz, A., (1990) Shock Tube Techniques in Chemical Kinetics, Annu. Rev. Phys. Chem., 41, 559–599CrossRefGoogle Scholar
  12. 12.
    Michael, J. V. and Sutherland, J. W., (1986) The Thermodynamic State of the Hot Gas Behind Reflected Shock Waves: Implications for Chemical Kinetics, Int. J. Chem. Kin., 18, 409–436CrossRefGoogle Scholar
  13. 13.
    Carlson, G. A., (1975), A Shock Tube Study of the C2F4-CF2 Equilibria, J. Phys. Chem., 75, 1625–1630CrossRefGoogle Scholar
  14. 14.
    Kumaran, S. S., Su, M. C., Lim, K. P., Michael, J. V., Wagner, A. F., Harding, L. B., Dixon, D. A., (1996) Ab Initio and Three Different Approaches to Unimolecular Rate Theory for the Dissociation of CC14, CFC13, CF2C12 and CF3Cl, J. Phys. Chem., 100, 7541–7549CrossRefGoogle Scholar
  15. 15.
    Glick, H. S., Squire, W., and Hertzberg, A., (1955) A New Shock Tube Technique for the Study of High Temperature Gas Phase Reactions, 5th Symp. (Int’l) on Combustion., Williams and Wilkins, Baltimore, 393–402Google Scholar
  16. 16.
    Klepeis, J. E., (1961) A Gas Dynamic Chemical Quench Tube, M. Sc. Thesis, Cornell UniversityGoogle Scholar
  17. 17.
    Tsang, W., (1964) Comparative Rate Measurements with a Single Pulse Shock Tube, J. Chem. Phys., 40, 1171–1172; (1965) Thermal Decomposition of Some Alkyl Halides by a Shock Tube Method, J. Chem. Phys, 41, 2487–2494CrossRefGoogle Scholar
  18. 18.
    Robaugh, D., and Tsang, W., (1986) Mechanism and Rte of Hydrogen Atom Attack on Toluene at High Temperatures, J. Phys. Chem., 90, 4159–4163CrossRefGoogle Scholar
  19. 19.
    Tsang, W., (1966), Thermal Decomposition of Hexamethylethane, 2, 2, 3-Trimethylbutane and Neopentane in a Single Pulse Shock Tube, J. Chem. Phys, 44, 4283–4295CrossRefGoogle Scholar
  20. 20.
    Tsang, W., (1985), The Stability of Alkyl Radicals, J. Am. Chem. Soc., 107, 2873–2880CrossRefGoogle Scholar
  21. 21.
    Price, S. J. W., Trotman-Dickenson, (1958) Kinetics of the Reaction of Methyl Radicals with Toluene, J. Chem. Soc., 4205–4207Google Scholar
  22. 22.
    Westley, F., Frizell, D. H, Herron, J. T., Hampson, R. F., Mallard, W. G., (1991) NIST Chemical Kinetics DataBase, NIST Standard Reference Data Base 17.1Google Scholar
  23. 23.
    Tsang, W., and Hampson, R. F., (1986) Chemical Kinetic Data Base for Combustion Modeling: I. Methane and Related Compounds, J. Phys. Chem. Ref. Data, 1087–1279Google Scholar
  24. 24.
    Ackermann, L., Hipper, H., Pagsberg, P., Riehs, C., Troe, J., (1990), Pulse Radiolysis, Flash Photolysis and Shock Wave Study of the Recombination H + Benzyl → Toluene at 300 K and 1300–1650 K., J. Phys. Chem., 94, 5247–5251CrossRefGoogle Scholar
  25. 25.
    Boyd, A. A., Noziere, B., Lesclaux, R., (1995), Kinetics and Thermochemistry of the Reversible Combination Reactions of Allyl and Benzyl with NO J. Phys. Chem., 99, 10815–10823CrossRefGoogle Scholar
  26. 26.
    Stein, S. E., Robaugh, D. A., Alfieri, A. D. and Miller R. E. (1982) Bond Homolysis in High Temperature Fluids, J. Amer. Chem. Soc., 104, 6567–6570CrossRefGoogle Scholar
  27. 27.
    Tsang, W., (1986) Single-Pulse Shock Tube Study on the Stability of Perfluorobromomethane, J. Phys. Chem., 90, 414–418.CrossRefGoogle Scholar
  28. 28.
    Walker, J. A. and Tsang, W., (1990) Single-Pulse Shock Tube Studies on the Thermal Decomposition of n-Butyl Phenyl Ether, n-Pentylbenzene and Phenotole and the Heat of Formation of Phenoxy and Benzyl Radicals, J. Phys. Chem., 94, 3224–3327CrossRefGoogle Scholar
  29. 29.
    Tsang, W., (1988) Chemical Kinetic Data Base for Combustion Modeling: Part 3. Propane, J. Phys. Chem. Ref. Data, 17, 887–951CrossRefGoogle Scholar
  30. 30.
    Benson, SW., and O’Neal, H. E., (1970) “Unimolecular Reactions”, NSRDS-21 US Goverment Printing Office, Washington, DC 20234Google Scholar
  31. 31.
    Burcat, A., Selenik, F. J., McBride, B. J., “Ideal Gas Thermodynamic Properties for the Phenyl, Phenoxy and 0-Biphenyl Radicals”, NASA Technical Memorandum 83899, January, 1985Google Scholar
  32. 32.
    Tsang, W. and Walker, J. A., (1992) Pyrolysis of 1, 7 Octadiene and the Kinetic and Thermal Stability of Allyl and 4-pentenyl Radicals, J. Phys. Chem., 96, 8378–8284CrossRefGoogle Scholar
  33. 33.
    Cui, J. P., He, Y. Z. and Tsang, W., (1988) Single-Pulse Shock Tube Studies on the Stability of l-Phenyl-2-butene and the Strength of the Vinyl-H Bond in Propene, Energy and Fuels, 2, 614–618CrossRefGoogle Scholar
  34. 34.
    Tsang, W., (1984) Single Pulse Shock Tube Study on the Thermal Stability of Ketones, Intl. J. Chem. Kin., 16 1543–1556.CrossRefGoogle Scholar
  35. 35.
    Hiatt, R. and Benson, S. W., (1973) Rate of Combination of Free Radicals, V. The tert-Butyl Radical, Int. J. Chem. Kin., 5, 385–396CrossRefGoogle Scholar
  36. 36.
    Walker, J. A. and Tsang, W., (1979) Thermal Decomposition of Hexamethylethane in a Flow System, 11, 867–882Google Scholar
  37. 37.
    Atri, G., Baldwin, R. R., Evans, G. A. and Walker, R. W., (1978) Decomposition of 2, 2, 3, 3, Tetramethylbutane in the Presence of Oxygen J. Chem. Soc., FaradayTrans I, 74, 366–379CrossRefGoogle Scholar
  38. 38.
    Tsang, W., (1996) “Heats of Formation of Organic Radicals by Kinetic Methods” in Energetics of Organic Free Radicals (J. A. M. Simhoes, A. Greenberg and J. F. Liebman, ed.), Blackie Academic and Professional, 1996, 22–58Google Scholar
  39. 39.
    Tsang, W. and Kiefer, J. H., (1995) “Unimolecular Reactions over Extended Pressure and Temperature Ranges” in Dynamics and Kinetics of Small Radicals, ed. K. Liu and A. Wagner. World Scientific Company, Singapore 59–119Google Scholar
  40. 40.
    Pacansky, J., and Yoshimine, M., (1986) Theoretical Studies on the Barrier to Internal Rotation of the Methyl Groups in the tert-Butyl Radical, J. Phys. Chem., 90, 1980–1983CrossRefGoogle Scholar
  41. 41.
    Krusic. P. J., Meakin, P. and Jesson, J. P., (1971) Electron Spin Resonance Studies if Conformation and Hindered Internal Rotation in Transient Free Radicals, J. Phys. Chem., 75, 3438–3453CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Wing Tsang
    • 1
  1. 1.National Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations