Advertisement

The Role of Ion Dissociation Dynamics in the Study of Ion and Neutral Thermochemistry

  • Tomas Baer
  • Rick Lafleur
  • Oleg Mazyar
Part of the NATO Science Series book series (ASIC, volume 535)

Abstract

Various thermochemical cycles involving dissociative photoionization onsets, electron affinities, and radical ionization energies are described in terms of their accuracy and information content. The information content of spectroscopic methods which yield spectral information and thus structural information are stressed. These ionic cycles are compared to traditional methods involving primarily chemical kinetics for obtaining free radical heats of formation. The ion methods are illustrated by thermochemical cycles involving the CH2CN radical and its positive and negative ions. Dissociative ionization is one of the most powerful methods for obtaining energetics of free radicals and ions. However, the information can only be accessed by carefully modeling the data with the statistical RRKM theory of unimolecular dissociation. Examples are illustrated for various molecular ions including the dissociation of ICH2CN which leads to CH2CN+ ions, and various organic esters, R’COOR+ which dissociate to various distonic and enolic isomers of methyl acetate.

Keywords

Methyl Acetate Dissociation Limit Kinetic Shift Methyl Butanoate Photoionization Mass Spectrometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berkowitz, J., Ellison, G.B. and Gutman, D. (1994) Three methods to measure RH bond energies. J. Phys. Chem. 98, 2744–2765CrossRefGoogle Scholar
  2. 2.
    Matimba, H.E.K., Crabbendam, A.M., Ingemann, S. and Nibbering, N.M.M. (1991) The gas-phase acidity of the phenyl radical and some C6H4X (X=F, Cl, CN) radicals. J. Chem. Soc. Chem. Commun. 644–645Google Scholar
  3. 3.
    DuPuy, C.H. and Bierbaum, V.M. (1984) Relative gas-phase acidities of the alkanes. J. Am. Chem. Soc. 106, 4051–4053CrossRefGoogle Scholar
  4. 4.
    Gunion, R.F., Gilles, M.K., Polak, M.L. and Lineberger, W.C. (1992) Ultraviolet photoelectron spectroscopy of the phenide, benzyl, and phenoxide anions, with ab initio calculations. Int. J. Mass Spectrom. Ion. Proc. 117, 601–620CrossRefGoogle Scholar
  5. 5.
    Meot-Ner, M. and Sieck, L.W. (1986) Relative acidities of water and methanol and the stabilities of the dimer anions. J. Phys. Chem. 90, 6687–6690CrossRefGoogle Scholar
  6. 6.
    Smith, B.J. and Radom, L. (1991) Evaluation of accurate gas-phase acidities. J. Phys. Chem. 95, 10549–10551CrossRefGoogle Scholar
  7. 7.
    Smith, B.J. and Radom, L. (1993) Assigning absolute values to proton affinities: A differentiation between competing scales. J. Am. Chem. Soc. 115, 4885–4888CrossRefGoogle Scholar
  8. 8.
    Mautner, M. and Sieck, L.W. (1991) Proton affinity Ladders from variable temperature Equilibrium measurements. 1. Reevaluation of the upper proton affinity range. J. Am. Chem. Soc. 113, 4448–4460CrossRefGoogle Scholar
  9. 9.
    Lias, S.G., Liebman, J.F. and Levin, R.D. (1984) Evaluated gas phase basicities and proton affinities of molecules: Heats of formation of protonated molecules. J. Phys. Chem. Ref. Data 13, 695–808CrossRefGoogle Scholar
  10. 10.
    Szulejko, J.E. and McMahon, T.B. (1991) A pulsed electron beam, variable temperature, high pressure mass spectrometric re-evaluation of the proton affinity difference between 2-methyl propene and ammonia. Int. J. Mass Spectrom. Ion. Proc. 109, 279–294CrossRefGoogle Scholar
  11. 11.
    Szulejko, J.E. and McMahon, T.B. (1993) Progress toward an absolute gas phase proton affinity scale. J. Am. Chem. Soc. 115, 7839–7848CrossRefGoogle Scholar
  12. 12.
    Keister, J.W., Tomperi, P. and Baer, T. (1997) Ethyl Loss Kinetics of Tetraethylsilane Ions Studied by TPEPICO. Int. J. Mass Spectrom. Ion. Proc. 171, 243–251CrossRefGoogle Scholar
  13. 13.
    Bryant, G.P., Jiang, Y. and Grant, E.R. (1992) The vibrational structure of NO2 cation. Chem. Phys. Lett. 200, 495–501CrossRefGoogle Scholar
  14. 14.
    Bryant, G.P., Jiang, Y., Martin, M. and Grant, E.R. (1994) Rovibrational structure of NO2 + and state-to-state dynamics in the high-resolution threshold photoionization of NO2. J. Chem. Phys. 101, 7199–7210CrossRefGoogle Scholar
  15. 15.
    Rustic, B., Berkowitz, J., Curtiss, L.A. and Pople, J.A. (1989) The ethyl radical: Photoionization and theoretical studies. J. Chem. Phys. 91, 114–121CrossRefGoogle Scholar
  16. 16.
    Rustic, B. and Berkowitz, J. (1993) Photoionization mass spectrometry of CH2S and HCS. J. Chem. Phys. 98, 2568–2579CrossRefGoogle Scholar
  17. 17.
    Rustic, B. and Berkowitz, J. (1992) Photoionization mass spectrometric studies of the isomeric transient species mercaptomethyl (CH2SH) and methylthio (MeS). J. Chem. Phys. 97, 1818–1823CrossRefGoogle Scholar
  18. 18.
    Ruscic, B. and Berkowitz, J. (1993) Heat of formation of hydoxymethyl and methanol D0(H-CH2OH). J. Phys. Chem. 97, 11451–11455CrossRefGoogle Scholar
  19. 19.
    Houle, F.A. and Beauchamp, J.L. (1979) Photoelectron spectroscopy of methyl, ethyl, isopropyl and tert-butyl radicals. Implications for the thermochemistry and structure of the radicals and their corresponding carbonium ions. J. Am. Chem. Soc. 101, 4067–4074CrossRefGoogle Scholar
  20. 20.
    Throne Jr., R.P., Monks, P.S., Stief, L.J., Kuo, S.C., Zhang, Z, Ross, S.K. and Klemm, R.B. (1998) Photoionization Efficiency spectrum and ionization energy of the cyanomethyl radical and products of the N(4S) + C2H3 reaction. J. Phys. Chem. A 102, 841–851CrossRefGoogle Scholar
  21. 21.
    Lifshitz, A., Moran, A. and Bidani, S. (1987) Thermal reactions of acetonitrile at high temperatures. Pyrolysis behind reflected shocks. Int. J. Chem. Kin. 19, 61–79CrossRefGoogle Scholar
  22. 22.
    Holmes, J.L. and Mayer, P.M. (1995) A combined mass spectrometric and thermochemical examination of the C2, H2, N family of cations and radicals. J. Phys. Chem. 99, 1366–1370CrossRefGoogle Scholar
  23. 23.
    Ng, C.Y. (1997) Ultraviolet Photodissociation Studies of Organosulfur Molecules and Radicals: Energetics, Structure identification, and Internal State Distribution, in Neckers, D.C., Volman, D.H. and von Bunau, G. (eds)., Advances in Photochemistry, John Wiley & sons, Inc. New York, pp. 1–116CrossRefGoogle Scholar
  24. 24.
    Muller-Dethlefs, K. and Schlag, E.W. (1991) High resolution zero kinetic energy (ZEKE) photoelectron spectroscopy of molecular systems. Ann. Rev. Phys. Chem. 42, 109–136CrossRefGoogle Scholar
  25. 25.
    Dopfer, O., Reiser, G., Muller-Dethlefs, K., Schlag, E.W. and Colson, S.D. (1994) Zero-kinetic energy photoelectron spectroscopy of the hydrogen bonded phenol-water complex. J. Chem. Phys. 101, 974–989CrossRefGoogle Scholar
  26. 26.
    Takahashi, M. and Kimura, K. (1992) Cation vibrational spectroscopy of trans and gauche n-propylbenzene rotational isomers: two color threshold photoelectron study and ab initio calculations. J. Chem. Phys. 97, 2920–2927CrossRefGoogle Scholar
  27. 27.
    Cockett, M.C.R., Ozeki, H., Okuyama, K. and Kimura, K. (1993) Vibronic coupling in the ground cationic state of naphthalene: A laser threshold photoelectron [zero kinetic energy (ZEKE)-photoelectron] spectroscopic study. J. Chem. Phys. 98, 7763–7772CrossRefGoogle Scholar
  28. 28.
    Reiser, G., Habenicht, W. and Muller-Dethlefs, K. (1993) Zero kinetic energy (ZEKE) photoelectron spectroscopy of ammonia by nonresonant two photon ionization from the neutral ground state. J. Chem. Phys. 98, 8462–8468CrossRefGoogle Scholar
  29. 29.
    Fischer, I., Lochschmidt, A., Strobel, A., Niedner-Schatteburg, G., Muller-Dethlefs, K. and Bondybey, V.E. (1993) The nonresonant two photon zero kinetic energy photoelectron spectrum from the electronic ground state of H2S. J. Chem. Phys. 98, 3592–3599CrossRefGoogle Scholar
  30. 30.
    Smith, J.M. and Knee, J.L. (1993) Analysis of the torsional potential of 9, 10-dihydrophenanthrene in three electronic states: S0, S1, and cation ground state. J. Chem. Phys. 99, 38–46CrossRefGoogle Scholar
  31. 31.
    Takazawa, K., Fujii, M. and Ito, M. (1993) Internal rotation of the methyl group in fluorotoluene cations as studied by pulsed field ionization-zero kinetic energy spectroscopy. J. Chem. Phys. 99, 3205–3217CrossRefGoogle Scholar
  32. 32.
    Merkt, F. and Guyon, P.M. (1993) The zero-kinetic energy photoelectron spectrum of nitrogen between 15.5 and 26.5 eV. J. Chem. Phys. 99, 3400–3410CrossRefGoogle Scholar
  33. 33.
    Dopfer, O., Lembach, G., Wright, T.G. and Muller-Dethlefs, K. (1993) The phenol dimer: zero-kinetic energy photoelectron and two-color resonance-enhanced multiphoton spectroscopy. J. Chem. Phys. 98, 1933–1943CrossRefGoogle Scholar
  34. 34.
    Eiden, G.C., Lu, K.T., Badenhoop, J., Weinhold, F. and Weisshaar, J.C. (1996) Threshold photoioization spectra of benzyl radical: Cation vibrational states and ab initio calculations. J. Chem. Phys. 104, 8886–8895CrossRefGoogle Scholar
  35. 35.
    Zhu, L. and Johnson, P. (1991) Mass analyzed threshold ionization spectroscopy. J. Chem. Phys. 94, 5769–5771CrossRefGoogle Scholar
  36. 36.
    Krause, H. and Neusser, H.J. (1993) The van der Waals modes of the benzene-Ar+ complex studied by mass selective pulsed field threshold ionization. Chem. Phys. Lett. 213, 603–609CrossRefGoogle Scholar
  37. 37.
    Moran, S., Ellis, Jr., Defrees, D.J., McLean, A.D. and Ellison, G.B. (1987) Carbanion spectroscopy: CH2CN. J. Am. Chem. Soc. 109, 5996–6003CrossRefGoogle Scholar
  38. 38.
    Booze, J.A. and Baer, T. (1992) Ab initio molecular orbital study of C3H8O+ ions. J. Phys. Chem. 96, 5710–5715CrossRefGoogle Scholar
  39. 39.
    Booze, J.A. and Baer, T. (1992) Dissociation dynamics of energy selected propanol ions from a σ type ion structure. J. Phys. Chem. 96, 5715–5719CrossRefGoogle Scholar
  40. 40.
    Chupka, W.A. (1959) Effect of unimolecular decay kinetics on the interpretation of appearance potentials. J. Chem. Phys. 30, 191–211CrossRefGoogle Scholar
  41. 41.
    Lifshitz, C. (1982) Time-resolved appearance energies, breakdown graphs, and mass spectra: the elusive “kinetic shift”. Mass Spectrom. Rev. 1, 309–348CrossRefGoogle Scholar
  42. 42.
    Lifshitz, C., Gotchiguian, P. and Roller, R. (1983) Time-dependent mass spectra and breakdown graphs. The kinetic shift in aniline. Chem. Phys. Lett. 95, 106–108CrossRefGoogle Scholar
  43. 43.
    Lifshitz, C. (1982) Time-dependent mass spectra and breakdown graphs. 2. The kinetic shift in pyridine. J. Phys. Chem. 86, 606–612CrossRefGoogle Scholar
  44. 44.
    Holmes, J.L., Hop, C.E.C.A. and Terlouw, J.K. (1986) Does the Unimolecular Dissociation of Ionized Methyl Acetate Produce CH3O or CH2OH Radicals? Org. Mass Spectrom. 21, 776–778CrossRefGoogle Scholar
  45. 45.
    Burgers, P.C., Holmes, J.L., Mommers, A.A., Szulejko, J.E. and Terlouw, J.K. (1984) Collisionally induced dissociative ionization of neutral products from unimolecular ion fragmentations. 1. neutral product structures. Org. Mass Spectrom. 19, 442–447CrossRefGoogle Scholar
  46. 46.
    Heinrich, N., Schmidt, J., Schwarz, H. and Apeloig, Y. (1987) On the mechanism of (C, H3, O) loss from ionized methyl acetate. An ab initio molecular orbital study. J. Am. Chem. Soc. 109, 1317–1322CrossRefGoogle Scholar
  47. 47.
    Mazyar, O.A., Mayer, P.M. and Baer, T. (1997) Isomerization and dissociation in competition: the two-component dissociation rates of methyl acetate ions. Int. J. Mass Spectrom. Ion. Proc. 167/168, 389–402CrossRefGoogle Scholar
  48. 48.
    Tsai, B.P., Werner, A.S. and Baer, T. (1975) A photoion photoelectron coincidence (PIPECO) study of fragmentation rates and kinetic energy release in energy selected metastable ions. J. Chem. Phys. 63; 4384–4392CrossRefGoogle Scholar
  49. 49.
    Terlouw, J.K., Holmes, J.L. and Burgers, P.C. (1985) On the loss of CH2OH radicals from ionized methyl acetate. Int. J. Mass Spectrom. Ion. Proc. 66, 239–243CrossRefGoogle Scholar
  50. 50.
    Martin, J.D.D. and Hepburn, J.W. (1997) Electric field induced dissociation of molecules in Rydberg-like highly vibrationally excited ion-pair states. Phys. Rev. Lett. 79, 3154–3157CrossRefGoogle Scholar
  51. 51.
    Berkowitz, J. (1996) Photoion-Pair Formation, in Becker, U. and Shirley, D.A. (eds)., VUV and Soft X-Ray Photoionization, Plenum Press, N.Y. pp. 263–289CrossRefGoogle Scholar
  52. 52.
    Keister, J.W., Baer, T., Evans, M., Ng, C.Y. and Hsu, C.W. (1997) Methyl loss kinetics of energy selected butadiene and 3-methyl cyclopropene cations. J. Phys. Chem. 101, 1866–1872CrossRefGoogle Scholar
  53. 53.
    Holmes, J.L. and Lossing, F.P. (1979) Keto and Enol Forms of Methyl Acetate Molecular Ions, Their Stability and Interconvertibility Prior to Fragmentation in the Gas Phase. Org. Mass Spectrom. 14, 512–513CrossRefGoogle Scholar
  54. 54.
    Schwarz, H. and Wesdemiotis, C. (1979) Aktivierungsenergie und Mechanismus der intramolekularen Wasserstoff-Wanderung bei Radikal-Kationen von Keto/Enol-Tautomeren in der Gasphase. Org. Mass Spectrom. 14, 25–28CrossRefGoogle Scholar
  55. 55.
    Marcus, R.A. and Rice, O.K. (1951) The kinetics of the recombination of methyl radicals and iodine atoms. J. Phys. Colloid Chem. 55, 894–908CrossRefGoogle Scholar
  56. 56.
    Rosenstock, H.M., Wallenstein, M.B., Wahrhaftig, A.L. and Eyring, H. (1952) Absolute rate theory for isolated systems and the mass spectra of polyatomic molecules. Proc. Natl. Acad. Sci. 38, 667–678CrossRefGoogle Scholar
  57. 57.
    Baer, T. (1986) The dissociation dynamics of energy selected ions. Adv. Chem. Phys. 64, 111–202CrossRefGoogle Scholar
  58. 58.
    Baer, T. and Hase, W.L. (1996) Unimolecular Reaction Dynamics: Theory and Experiments. Oxford, New YorkGoogle Scholar
  59. 59.
    Baer, T. (1996) The Calculation of Unimolecular Decay Rates with RRKM and ab initio Methods, in Baer, T., Ng, C.Y. and Powis, I. (eds)., The Structure, Energetics, and Dynamics of Organic Ions, John Wiley & Sons, Chichester, pp. 125–166Google Scholar
  60. 60.
    Mazyar, O.A. and Baer, T. (1998) Ethene loss kinetics of methyl butanoate ions studied by TPEPICO: The enol ion of methyl acetate heat of formation. Int. J. Mass Spectrom. Ion. Proc. (In press, 1998)Google Scholar
  61. 61.
    Vajda, J.H., Harrison, A.G., Hirota, A. and McLafferty, F.W. (1981) Unimolecular Reactions of Ionized Methyl Acetate and Its Enol: Mechanism for the Enol to Keto Isomerization. J. Am. Chem. Soc. 103, 36–39CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Tomas Baer
    • 1
  • Rick Lafleur
    • 1
  • Oleg Mazyar
    • 1
  1. 1.Department of ChemistryUniversity of North CarolinaChapel HillUSA

Personalised recommendations