Advertisement

FT ICR. Basic Principles and Some Representative Applications

  • José-Luis M. Abboud
  • Rafael Notario
Part of the NATO Science Series book series (ASIC, volume 535)

Abstract

Fourier Transform Ion Cyclotron Resonance Spectroscopy (FT ICR) is a mass-spectrometric technique. As it is the case for most of these methods, it is based on the effects of electric and magnetic fields (E and B, repectively) on the trajectories of charged particles of charge q and mass m [1].

Keywords

Proton Affinity Neutral Species Store Waveform Inverse Fourier Transform Trapping Electrode Thermodynamic State Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Footnotes

  1. 1.
    Thomson, Sir J. J. (1910) Rays of positive electricity, Phil. Mag. 7, 752–770.Google Scholar
  2. 2.
    Marshall, A. G. (1989) Analytical capabilities and applications of FT/ICR mass spectrometry, Adv., Mass Spectrom. 11, 651–677.Google Scholar
  3. 3.
    Lawrence, E..O. and Livingston, M. S. (1932) The production of high speed light ions without the use of high voltages, Phys. Rev. 40, 19–35.CrossRefGoogle Scholar
  4. 4.
    Comisarow, M. B. and Marshall, A. G. (1996) The early development of Fourier transform ion cyclotron resonance (FT-ICR) spectroscopy, J. Mass Spectrom. 31, 581–585.CrossRefGoogle Scholar
  5. 5.
    Gal, J.-F. (1997) A historical note on an unrecognized early stage of the development of fast scanning ion cyclotron resonance spectrometers: the resotron, Int. J. Mass Spectrom. Ion Processes 157/158, 1–4.CrossRefGoogle Scholar
  6. 6.
    Dunbar, R. C. (1991) History and general introduction, in B. Asamoto (ed.), FT-ICR/MS: Analytical Applications of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, VCH Publishers, Inc., New York, pp. 1–28.Google Scholar
  7. 7.
    McIver. Jr., R. T. (1980) Chemical reactions without solvation, Scientific American. 243. 148–160.CrossRefGoogle Scholar
  8. 8.
    McIver, Jr., R. T. (1970). A trapped ion analyzer cell for ion cyclotron resonance spectroscopy, Rev. Sci. Instmm. 41, 555–570.CrossRefGoogle Scholar
  9. 9.
    Marshall, A. G. and Schweikhard, L. (1992) Fourier transform ion cyclotron resonance mass spectrometry: technique developments, Int. J. Mass Spectrom. Ion Processes, 118/119, 37–70.CrossRefGoogle Scholar
  10. 10.
    Dunbar, R. C. and Asamoto, B. (1991). Instrumentation, in B. Asamoto (ed.), FT-ICR/MS: Analytical Applications of Fourier Transfonn Ion Cyclotron Resonance Mass Spectrometry, VCH Publishers, Inc., New York, pp. 29–48.Google Scholar
  11. 11.
    Lehman. T. A. and Bursey, M. M. (1976) Ion Cyclotron Resonance Spectroscopy, John Wiley & Sons, New York.Google Scholar
  12. 12.
    Comisarow, M. B. (1978) Signal modelling for ion cyclotron resonance, J. Chem. Phys. 69, 4097–4104.CrossRefGoogle Scholar
  13. 13.
    Xiang, X., Grosshans, P. B. and Marshall, A. G. (1993) Image charge-induced ion cyclotron orbital frequency shift for orthorhombic and cylindrical FT-ICR ion traps, Int. J. Mass Spectrom. Ion Processes. 125, 33–43.CrossRefGoogle Scholar
  14. 14.
    Allemann, M., Kellerhals, H. P. and Wanczek, K. P. (1983) High magnetic field Fourier transform ion cyclotron resonance spectroscopy, Int. J. Mass Spectrom. Ion Phys, 46, 139–142.CrossRefGoogle Scholar
  15. 15.
    Wang, Y. and Wanczek, K. P. (1993) A new ion cyclotron resonance cell for simultaneous trapping of positive and negative ions, Rev. Sci. Instrum. 64, 883–889.CrossRefGoogle Scholar
  16. 16.
    Marshall, A. G. and Verdun, F. R. (1990) Fourier Tratufonus in NMR, Optical and Mass Spectrometry, Elsevier, Amsterdam.Google Scholar
  17. 17.
    Anderson, J. S., Vartanian, V. H. and Laude, Jr., D. A. (1994) Evolution of trapped ion cells in Fourier transform ion cyclotron resonance mass spectrometry, Trends. Anal. Chem. 13, 234–239.CrossRefGoogle Scholar
  18. 18.
    Caravatti, P. and Allemann, M. (1991) The infinity cell: a new trapped ion-cell with radiofrequency trapping electrodes for Fourier transform ion cyclotron resonance sectroscopy, Org. Mass Spectrom. 26, 514–520.Google Scholar
  19. 19.
    Guang, S. and Marshall, A. G. (1996) Stored waveform inverse Fourier transform (SWIFT) ion excitation in trapped-ion mass spectrometry: theory and applications, Int. J. J. Mass Spectrom. Ion Processes, 157/158, 5–37.CrossRefGoogle Scholar
  20. 20.
    Laukien, F. H., Allemann, M., Bischofberger, P., Grossmann, P., Kellerhals. H. P. and Kofel, P. (1987) Instrumentation and application examples in analytical Fourier transform mass spectrometry, in M. V. Buchanan (ed.), Fourier Transform Mass Spectrometry. Evolution, Innovation, and Applications, ACS Symposium Series 359. American Chemical Society, Washington D. C., pp. 80–99.Google Scholar
  21. 21.
    McIver, Jr., R. T.. Li, Y. and Hunter, R. L. (1994) High-resolution laser desorption mass spectrometry of peptides and small proteins, Proc. Natl. Acad. Sci. U. S. A. 91. 4801–4805.CrossRefGoogle Scholar
  22. 22.
    (a) McMahon, T. B. (1996) Experimental approaches to the unimolecular dissociation of gaseous cluster ions, in N. G. Adams and L. M. Babcock (eds.). Advances in Gas Phase Ion Chemistry, JAI Press, Inc., Greenwich, Connecticut.Google Scholar
  23. (b) Sena, M. and Riveros, J. M. (1997) Thermal dissociation of acetophenone molecular ions activated by infrared radiation. J. Phys.Chem. A. 101, 4384–4391.Google Scholar
  24. 23.
    Kruppa, G. H., Caravatti, P., Radloff, C., Zürcher, S., Laukien, F., Watson, C. and Wronka. J. (1991) Analytical applications of the CMS 47X external ion source Fourier transform ion cyclotron mass spectrometer, in B. Asamoto (ed.), FT-ICR/MS: Analytical Applications of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, VCH Publishers, Inc., New York, pp. 107–138.Google Scholar
  25. 24.
    Asamoto, B. (1991) Laser desorption Fourier transform ion cyclotron resonance mass spectrometry, in B. Asamoto (ed.). FT-ICR/MS: Analytical Applications of Fourier Trcmsfonn Ion Cyclotron Resonance Mass Spectrometry, VCH Publishers, Inc., New York. pp. 157–185.Google Scholar
  26. 25.
    Solouki, T., Marto, J. A., White, F. M., Guan, S. and Marshall, A. G. (1995) Attomole biomolecule mass analysis by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance, Anal. Chem. 67. 4139–4144.CrossRefGoogle Scholar
  27. 26.
    Yamashita, M. and Fenn, J. B. (1984) Electrospray ion source. Another variation on the free-jet theme, J. Phys. Chem. 88, 4451–4459. Ibid., Negative ion production with the electrospray ion source, J. Phys. Chem. 88, 4671–4674.CrossRefGoogle Scholar
  28. 27.
    Sanz-Medel, A., García-Alonso, J. I. and Marchante-Gayón, J. M. (1998) Atomic mass spectrometry: state of the art, An. Quim. Int. Ed. 94, 149–155.Google Scholar
  29. 28.
    Hettich, R. L. and Freiser, B. S. (1987) Gas phase photodissociation of transition metal ion complexes and clusters, in M. V. Buchanan (ed.), Fourier Transform Mass Spectrometry. Evolution, Innovation, and Applications, ACS Symposium Series 359. American Chemical Society, Washington D. C., pp. 155–174.CrossRefGoogle Scholar
  30. 29.
    Jiao, C. Q. and Freiser, B. S. (1995) Reactions of Nbn + (n=2–6) with ethylene in the gas phase: collision-induced dissociation studies of ionic products, J. Phys. Chem. 99, 3969–3977.CrossRefGoogle Scholar
  31. 30.
    Bowers, M. T., Aue. D. H., Webb, H. M. and McIver, Jr., R. T. (1971) Equilibrium constants for gas-phase ionic reactions. Accurate determination of relative proton affinities. J. Am. Chem. Soc. 93, 4354–4359.CrossRefGoogle Scholar
  32. 31.
    Graul. S. T. and Squires, R. R. (1990) Gas-phase acidities derived from threshold energies for activated reactions, J. Am. Chem. Soc. 112, 2517–2529.CrossRefGoogle Scholar
  33. 32.
    Bohme, K. D., Lee-Ruff, E. and Young, L. B. (1971) Acidity order of selected Bronsted acids in the gas phase at 300 K, J. Am. Chem. Soc. 93, 5513–5520.CrossRefGoogle Scholar
  34. 33.
    Abboud, J.-L. M., Castaño, O., Delia, E. W., Herreros, M., Müller, P., Notario, R. and Rossier, J. C. (1997) Correlation of gas-phase stability of bridgehead carbocations with rates of solvolysis and ab initio calculations, J. Am. Chem. Soc. 119, 2262–2266.CrossRefGoogle Scholar
  35. 34.
    Gal. J.-F. and Maria, P.-C. (1990) Correlation analysis of acidity and basicity: from the solution to the gas phase, Prog. Phys. Org. Chenu 17, 159–238.CrossRefGoogle Scholar
  36. 35.
    Abboud, J.-L. M., Notario, R., Santos, L. and López-Mardomingo, C. (1989) Structural effects on the iodine cation basicity of organic bases in the gas phase, J. Am. Chenu Soc. 111, 8960–8961.CrossRefGoogle Scholar
  37. 36.
    Fukuda, E. K. and McIver, Jr., R. T. (1985) Relative electron affinities of substituted benzophenones, nitrobenzenes and quinones, J. Am. Chenu Soc. 107, 2291–2296.CrossRefGoogle Scholar
  38. 37.
    Lias, S. G. and Bartmess, J. E. (1998) Gas-phase ion thermochemistry. Information drawn on June 6 from http://webbook.nist.gov/chemistry/ion/
  39. 38.
    Notario, R., Abboud, J.-L. M., Cativiela, C., García, J. I., Herreros, M., Homan, H., Mayoral, J. A. and Salvatella, L. (1998) Dramatic medium effects on reactivity. The ionization sites of pyrrole and indole carboxylic acids, submitted.Google Scholar
  40. 39.
    Hunter, E. P. L. and Lias, S. G. (1998) Evaluated gas phase basicities and proton affinities of molecules: an update, J. Phys. Chenu Ref. Data 27, 413–656.CrossRefGoogle Scholar
  41. 40.
    Szulejko, J. E. and McMahon, T. B. (1993) Progress toward an absolute gas-phase proton affinity scale, J. Am. Chenu Soc. 115, 7839–7848.CrossRefGoogle Scholar
  42. 41.
    Smith, B. J. and Radom, L. (1993) Assigning absolute values to proton affinities: a differentiation between competing scales, J. Am. Chenu Soc. 115, 4885–4888.CrossRefGoogle Scholar
  43. 42.
    Cacace, F. and Speranza, M. (1994) Protonated ozone: experimental detection of O3H+ and evaluation of the proton affinity of ozone, Science 265, 208–209.CrossRefGoogle Scholar
  44. 43.
    Bouchoux, G. and Salpin, J. Y. (1996) Gas-phase basicity and heat of formation of sulfine CH2=S=O, J. Am. Chenu Soc. 118, 6516–6517.CrossRefGoogle Scholar
  45. 44.
    Witt, M. and Grützmacher, H.-F. (1997) Proton-bound dimers of aliphatic carboxamides: gas-phase basicity and dissociation energy, Int. J. Mass Spectrom. Ion Processes 165/166, 49–62.CrossRefGoogle Scholar
  46. 45.
    Majumdar, T. K., Clairet, F., Tabet, J.-C. and Cooks, R. G. (1992) Epimer distinction and structural effects on gas-phase acidities of alcohols measured using the kinetic method, J. Am. Chenu Soc. 114, 2897–2903.CrossRefGoogle Scholar
  47. 46.
    Higgins, P. R. and Bartmess, J. E. (1998) The gas-phase acidities of long chain alcohols, Int. J. Mass Spectronu Ion Processes 175, 71–79.CrossRefGoogle Scholar
  48. 47.
    Decouzon, M., Formento, A., Gal, J.-F., Herreros, M., Li, L., Maria, P.-C., Koppel, I. and Kurg, R. (1997) Lithium-cation and proton affinities of sulfoxides and sulfoncs: a Fourier transform ion cyclotron resonance study, J. Am. Soc. Mass Spectrom. 8, 321–322.Google Scholar
  49. 48.
    Pau, C.-F. and Hehre, W. J. (1982) Heat of formation of hydrogen isocyanide by ion cyclotron double resonance spectroscopy, J. Am. Chem. Soc. 86, 2897–2903.Google Scholar
  50. 49.
    Born, M., Ingemann, S. and Nibbering, N. M. M. (1996) Experimental determination of the enthalpies of formation of formyl cyanide and thioformyl cyanide in the gas phase, J. Phys. Chem. 100, 17662–17669.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • José-Luis M. Abboud
    • 1
  • Rafael Notario
    • 1
  1. 1.Instituto de Química Física “Rocasolano”C.S.I.C.MadridSpain

Personalised recommendations