High Pressure Mass Spectrometry

Instrumentation, Techniques and Applications
  • T. B. McMahon
Part of the NATO Science Series book series (ASIC, volume 535)


The technique of High Pressure Mass Spectrometry (HPMS) was pioneered by Kebarle[l]. The original intent was to replicate the environment in which radiolysis experiments were carried out in order to elucidate the precise mechanisms by which the final observed radiolysis products had been formed. In this early version of the HPMS experiment a gas confined at high pressure (100–300 torr) was irradiated continuously by an a particle emitter[2]–[4]. The ions emerging from a small ion exit aperture were then sampled by a mass spectrometer and attempts were made to deduce the role of the ions observed in the formation of the neutral products by conventional radiolysis techniques. The application of these high pressure techniques to radiation chemistry of hydrocarbons proved unsatisfactory but, more importantly, it was noted that multiply solvated protons dominated the mass spectrum when either water or ammonia were present in the ion source. This quickly led to the realization that the successive solvation equilibria, eqn. (1), could readily be studied and a prolific era of the study of gas phase ion energetics was born[5]–[7].


Proton Affinity Black Body Radiation Potential Energy Profile Dissociative Electron Attachment Unimolecular Dissociation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kebarle, P. and Godbole, E.W. (1962) J. Chem. Phys. 36 302.CrossRefGoogle Scholar
  2. 2.
    Kebarle, P. and Godbole, E.W. (1963) J. Chem. Phys. 39 1131.CrossRefGoogle Scholar
  3. 3.
    Kebarle, P. and Hogg A.W. (1965) J. Chem. Phys. 42 668.CrossRefGoogle Scholar
  4. 4.
    Hogg, A.M., Haynes, R.M., and Kebarle, P. (1966) J. Am. Chem. Soc. 88, 28.CrossRefGoogle Scholar
  5. 5.
    Durden, D.A., Kebarle, P., and Good, A. (1969) J. Chem. Phys. 50, 302.CrossRefGoogle Scholar
  6. 6.
    Good, A., Durden, D.A., and Kebarle, P. (1970) J. Chem. Phys. 52, 212.CrossRefGoogle Scholar
  7. 7.
    Cunningham, A.J., Payzant, J.D., and Kebarle, P. (1971) J. Am. Chem. Soc. 94, 7627.CrossRefGoogle Scholar
  8. 8.
    Szulejko, J.E., Fisher, J.J., McMahon, T.B., and Wronka, J. (1988) Int. J. Mass Spectrom. Ion Proc. 83, 147.CrossRefGoogle Scholar
  9. 9.
    Kofel, P. and McMahon, T.B. (1990) Int. J. Mass Spectrom. Ion Proc. 98, 1.CrossRefGoogle Scholar
  10. 10.
    E. G. &G ORTEC, Oak Ridge, TN. 37830 (USA).Google Scholar
  11. 11.
    Talroze, V.L. and Lyubimova, A.K. (1952) Dokl. Akad. Nauk. S.S.SR. 86, 909.Google Scholar
  12. 12.
    Chowdhury, S., Heinis, T., Grimsrud, E., and Kebarle, P.(1986) J. Phys Chem. 90, 2747.CrossRefGoogle Scholar
  13. 13.
    McMahon, T.B. and Kebarle, P. (1976) J. Am. Chem. Soc. 98, 3399.CrossRefGoogle Scholar
  14. 14.
    Kleingeld, J. C. and Nibbering, N. M. M. (1983) Int. J. Mass Spectrom; Ion Proc. 49, 311.CrossRefGoogle Scholar
  15. 15.
    Smith, A. L. C. and Field, F. H. (1977) J. Am. Chem. Soc. 99, 6471.CrossRefGoogle Scholar
  16. 16.
    Glukhovtsev, M. N., Szulejko, J. E., McMahon, T. B., Gauld, J. W., Scott, A. P., Smith, B. J., and Radom, L. (1994) J. Phys. Chem; 98, 13099.CrossRefGoogle Scholar
  17. 17.
    Bouchard, F., Hepburn, J. W., McMahon, T. B. (1989) J. AM. Chem. Soc. 111, 8934.CrossRefGoogle Scholar
  18. 18.
    Bouchard, F. (1991) Ph.D. Thesis, The University of Waterloo.Google Scholar
  19. 19.
    Bouchard, F., Brenner, V., Carra, C., Hepbum, J., Koyanagi, G.K., McMahon, T.B., Ohanessian, G., and Peschke, M. (1997) J. Phys. Chem. A. 101, 5885.CrossRefGoogle Scholar
  20. 20.
    Koyanagi, G.K. and McMahon, T.B. unpublished results.Google Scholar
  21. 21.
    Meot-Ner, M. and Field, F. (1976) J. Chem. Phys. 64, 277.CrossRefGoogle Scholar
  22. 22.
    Wolf, J.F., Staley, R. H., Koppel, I., Taagapera, M., McIver, R. T., Beauchamp, J. L., and Taft, R. W. (1977) J. Am. Chem. Soc. 99, 5417.CrossRefGoogle Scholar
  23. 23.
    Brauman, J. I. and Blair, L. K. (1968) J. Am. Chem. Soc. 90, 6561.CrossRefGoogle Scholar
  24. 24.
    Baer, T. and Lafleur, R. this volume.Google Scholar
  25. 25.
    Lias, S. G., Liebman, J. F., and Levin, R. D. (1984) J. Phys. Chem. Ref. Data 13, 743.CrossRefGoogle Scholar
  26. 26.
    Meot-Ner, M. and Sieck, L. W. (1991) J; Am. Chem. Soc. 113, 4448.CrossRefGoogle Scholar
  27. 27.
    Szulejko, J. E. and McMahon, T. B. (1991) Int. J. Mass Spectrom. Ion Proc. 109, 279.CrossRefGoogle Scholar
  28. 28.
    Szulejko, J. E. and McMahon, T. B. (1993) J.Am. Chem. Soc. 115, 7839.CrossRefGoogle Scholar
  29. 29.
    Rusic, B., Schwarz, M., and Berkowitz, J. (1989) J. Chem. Phys. 91, 6772.CrossRefGoogle Scholar
  30. 30.
    Traeger, J. C. (1985) Int. J. Mass Spectrom. Ion Proc. 66, 271.CrossRefGoogle Scholar
  31. 31.
    Baer, T. (1980) J. Am. Chem. Soc. 102, 2482.CrossRefGoogle Scholar
  32. 32.
    Traeger, J. C. and McLoughlin, R. G. (1981) J. Am. Chem. Soc. 103, 3647.CrossRefGoogle Scholar
  33. 33.
    McLoughlin, R. G. and Traeger, J. C. (1979) J. Am. Chem. Soc. 101, 5791.CrossRefGoogle Scholar
  34. 34.
    NIST webbookGoogle Scholar
  35. 35.
    Smith, B. S. and Radom, L. (1993) J. Am. Chem. Soc. 115, 4885.CrossRefGoogle Scholar
  36. 36.
    Keister, J. W., Riley, J. S., and Baer, T. (1993) J. Am. Chem. Soc. 115, 12613.CrossRefGoogle Scholar
  37. 37.
    Traeger, J. C., private communication.Google Scholar
  38. 38.
    Morton, T. (1982) Tetrahedron 38, 3195.CrossRefGoogle Scholar
  39. 39.
    Bouchoux, G. and Hoppilliard, Y. (1990) J. Am. Chem. Soc. 112, 9110.CrossRefGoogle Scholar
  40. 40.
    Norrman, K. and McMahon, T. B. (1996) J. Am. Chem. Soc. 118, 2449.CrossRefGoogle Scholar
  41. 41.
    Gleave, J. L., Hughes, E. D., and Ingold, C. K. (1935) J. Chem. Soc., 236.Google Scholar
  42. 42.
    Olmstead, W. N. and Brauman, J. I. (1979) J. Am. Chem. Soc. 101, 3715.CrossRefGoogle Scholar
  43. 43.
    DePuy, C. H., Gronert, S., Mullin, A., and Bierbaum, V. M. (1990) J. Am. Chem. Soc. 112, 8650.CrossRefGoogle Scholar
  44. 44.
    Caldwell, G., Magnera, T. F., and Kebarle, P. (1984) J. Am. Chem. Soc. 106, 959.CrossRefGoogle Scholar
  45. 45.
    Tucker, S. C. and Truhlar, D. G. (1989) J. Phys. Chem. 93, 8138.CrossRefGoogle Scholar
  46. 46.
    Vandelinde, S. R. and Hase, W. L. (1989) J. Am. Chem. Soc. 111, 2349.CrossRefGoogle Scholar
  47. 47.
    Vetter, R. and Zulicke, L. (1990) J. Am. Chem. Soc. 112, 5136.Google Scholar
  48. 48.
    Li, C., Ross, P., Szulejko, J. E., and McMahon, T. B. (1996) J. Am. Chem. Soc. 118, 9360.CrossRefGoogle Scholar
  49. 49.
    McMurray, J., (1996) Organic Chemistry (4th ed.) Brooks-Cole Publishing Co. Pacific Grove, CA (USA).Google Scholar
  50. 50.
    Tholmann, D., Tonner, D. S., and McMahon, T. B. (1994) J. Phys. Chem. 98, 2002.CrossRefGoogle Scholar
  51. 51.
    Tonner, D. S., Tholmann, D., and McMahon, T. B. (1995) Chem. Phys. Lett. 223, 324.CrossRefGoogle Scholar
  52. 52.
    Dunbar, R. C. and McMahon, T. B. (1998) Science 279, 194.CrossRefGoogle Scholar
  53. 53.
    Perrin, J. (1919) Ann. Phys. 11, 5.Google Scholar
  54. 54.
    Langmuir, J. (1920) J. Am. Chem. Soc. 42, 2190.CrossRefGoogle Scholar
  55. 55.
    Lindemann, F. A. (1922) Trans. Faraday Soc. 17, 598.CrossRefGoogle Scholar
  56. 56.
    Steinfeld, J. I., Francisco, J. S., and Hase, W. L. (1989) Chemical Kinetics and Dynamics, Prentice Hall, Englewood Cliffs, NJ (USA).Google Scholar
  57. 57.
    Dunbar, R. C. (1991) J. Chem. Phys. 95, 2537.CrossRefGoogle Scholar
  58. 58.
    Dunbar, R. C., McMahon, T. B., Tholmann, D., Tonner, D. S., Salahub, D. R., and Wei, D. (1995) J. Am. Chem. Soc. 117, 12189.CrossRefGoogle Scholar
  59. 59.
    Price, W. D., Schnier, P. D., Jockusch, R. A., Strittmatter, E. F., and Williams, E. R. (1996) J. Am. Chem. Soc. 118, 10640.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • T. B. McMahon
    • 1
  1. 1.Department of ChemistryUniversity of WaterlooWaterlooCanada

Personalised recommendations