Energetics and Structures of Gas Phase Ions: Macromolecules, Clusters and Ligated Transition Metals

  • Michael T. Bowers
  • Paul R. Kemper
  • Petra Van Koppen
  • Thomas Wyttenbach
  • Catherine J. Carpenter
  • Patrick Weis
  • Jennifer Gidden
Part of the NATO Science Series book series (ASIC, volume 535)


In this paper a number of methods for determining thermochemical data for gas phase ions are described. Of most importance are ion equilibrium measurements where emphasis is placed on the differences in our work from earlier studies. Most of the paper is devoted to novel applications. These emphasize transition metal centers, the roles ligands play in activating them, and the very subtle interplay between the nearly degenerate s and d orbitals. A case study of sequential ligation by dihydrogen of the entire first transition metal series is given. Generally the first solvation sphere closes at n = 6 but interesting exceptions are noted. High level ab initio calculations are done on each system allowing structural information and details of the bonding to be obtained. Other systems discussed include a few second row metals, the role of the Cp ligand in activating Co+ and the discussion of a novel cluster assisted σ-bond activation scheme. The paper concludes with a demonstration that the structurally important ion chromatography technique can be used to extract thermochemical information on macromolecules under favorable conditions.


Collision Induce Dissociation Solvation Shell Kinetic Energy Release Arrival Time Distribution Collision Induce Dissociation Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See, for example, “The Binding Energy of VXe+,” Bellert, D., Buthelezi, T., Dezfulian, K., Hayes, T., and Brucat, P.J. (1996) Client Phys. Lett. 260, 458–464 and references therein.Google Scholar
  2. 2.
    “The Solvation of the Hydrogen Ion by Water Molecules in the Gas Phase. Heats and Entropies of Solvation of Individual Reactions: H+(H2O)n−1 + H2O → H+(H2O)n,” Kebarle, P., Searles, S.K., Zolla, A., Scarborough, J., Arshadi, M. (1967) J. Am. Chem. Soc. 89, 6393; “Mass-Spectrometric Study of Ions at Near-Atmospheric Pressure. II. Ammonium Ions Produced by the Alpha Radiolysis of Ammonia and Their Solvation in the Gas Phase by Ammonia and Water Molecules,” Hogg, A.M., Kebarle, P. (1965) J. Chem. Phys. 43, 449.Google Scholar
  3. 3.
    “Gas-Phase Thermochemistry of Transition Metal Ligand Systems: Reassessment of Values and Periodic Trends,” Armentrout, P.B., Kickel, B.L., in Freiser, B.S. (ed.) (1996) Organometallic Ion Chemistry, Kluwer Academic Publishers, Dordrecht, 1–46 and references therein.Google Scholar
  4. 4.
    “Kinetic Energy Release Distributions as a Probe of Transition-Metal-Mediated H-H, C-H, and C-C Bond Formation Processes: Reactions of Cobalt and Nickel Ions with Alkanes,” Hanratty, M.A., Beauchamp, J.L., lilies, A.J., van Koppen, P., Bowers, M.T. (1988) J. Am. Chem. Soc. 110, 1.CrossRefGoogle Scholar
  5. 5.
    “Statistical Phase Space Theory of Polyatomic Systems: Application to the Unimolecular Reactions C6H5CN → C6H4 + HCN and C4H6 + → C3H3 + + ·CH3,” Chesnavich, W.J., Bowers, M.T. (1977) J. Am. Chem. Soc. 99, 1705; “Multiple Transition States in Unimolecular Reactions: A Transition State Switching Model. Application to the C4H8 System,” Chesnavich, W.J., Bass, L., Su, T., Bowers, M.T. (1981) J. Chem. Phys. 74, 2228.Google Scholar
  6. 6.
    “Mechanism of the Metastable Reaction H2S+ → S+ + H2; Product Energy Distributions and Their Dependence on Temperature,” Jarrold, M.F., lilies, A.J., Bowers, M.T. (1982) Chem. Phys. 65, 19.Google Scholar
  7. 7.
    “Organometallic Reaction Energetics from Product Kinetic Energy Release Distributions,” van Koppen, P., Bowers, M.T., Beauchamp, J.L., Dearden, D.V., in Marks, T.J. (ed.) (1990) Bonding Energetics in Organometallic Compounds, ACS Symposium Series #428, Washington, DC, 34–54.Google Scholar
  8. 8.
    “A Hybrid Double-Focusing Mass Spectrometer — High-Pressure Drift Reaction Cell to Study Thermal Energy Reactions of Mass-Selected Ions,” Kemper, P.R., Bowers, M.T. (1990) J. Am. Soc. Mass Spectrom. 1, 197.CrossRefGoogle Scholar
  9. 9.
    “Structures and Energetics of Vn(C6H6)m + Clusters: Evidence for a Quintuple-Decker Sandwich,” Weis, P., Kemper, P.R., Bowers, M.T. (1997) J. Phys. Chem. A 101, 8207.CrossRefGoogle Scholar
  10. 10.
    “Mn+(H2)n and Zn+(H2)n Clusters: Influence of 3d and 4s Orbitals on Metal-Ligand Bonding,” Weis, P., Kemper, P.R., Bowers, M.T. (1997) J. Phys. Chem. A. 101, 2809.CrossRefGoogle Scholar
  11. 11.
    “Cr+(H2)n Clusters: Asymmetric Bonding From a Symmetric Ion,” Kemper, P.R., Weis, P., Bowers, M.T. (1997) Int. J. Mass Spectrom. Ion Proc. 160, 17.CrossRefGoogle Scholar
  12. 12.
    “Inclusion of a MALDI Ion Source in the Ion Chromatography Technique-Conformational Information on Polymer and Biomolecular Ions,” von Helden, G., Wyttenbach, T., Bowers, M.T. (1995) Int. J. Mass Spectrom Ion Proc. 146/147, 349.CrossRefGoogle Scholar
  13. 13.
    “Electronic-State Chromatography — Application to lst-Row Transition-Metal Ions,” Kemper, P.R., Bowers, M.T. (1991) J. Phys. Chem. 95, 5134.CrossRefGoogle Scholar
  14. 14.
    “Gas-Phase Ion Chromatography — Transition Metal State Selection and Carbon Cluster Formation,” Bowers, M.T., Kemper, P.R., von Helden, G., van Koppen, P. (1993) Science 260, 1446.CrossRefGoogle Scholar
  15. 15.
    “Carbon Cluster Cations with up to 84 Atoms — Structures, Formation Mechanism, and Reactivity,” von Helden, G., Hsu, M.-T., Gotts, N., Bowers, M.T. (1993) J. Phys. Chem. 97, 8182.CrossRefGoogle Scholar
  16. 16.
    “Gas-Phase Conformation of Biological Molecules — Bradykinin,” Wyttenbach, T., von Helden, G., Bowers, M.T. (1996) J. Am. Chem. Soc. 118, 8355.CrossRefGoogle Scholar
  17. 17.
    “Electronic State Effects in Sigma Bond Activation by First Row Transition Metal Ions: The Ion Chromatography Technique,” van Koppen, P., Kemper, P.R., Bowers, M.T. in Freiser, B.S. (ed.) (1996) Organometallic Ion Chemistry, Kluwer Academic Press, Dordrecht, 157–196.CrossRefGoogle Scholar
  18. 18.
    “Reactions of CoCp+ (Cp = Cyclopentadienyl) with Hydrocarbons in the Gas Phase. Observation of Novel Skeletal Isomerizations/Dehydrocyclizations Resulting in Cobaltocenium Formation,” Jacobson, D.B., Freiser, B.S. (1985) J. Am. Chem. Soc. 107, 7399.CrossRefGoogle Scholar
  19. 19.
    “Selective Intermolecular Carbon-Hydrogen Bond Activation by Synthetic Metal Complexes in Homogeneous Solution,” Arndtsen, B.A., Berman, R.G., Mobley, T.A., Peterson, T.H. (1995) Acts. Chem. Research 28, 154.CrossRefGoogle Scholar
  20. 20.
    “Co+ · (H2)n Clusters — Binding Energies and Molecular Parameters,” Kemper, P.R., Bushneil, J., von Helden, G., Bowers, M.T. (1993) J. Phys. Chem. 97, 52.CrossRefGoogle Scholar
  21. 21.
    van Koppen, P., Perry, J., Carpenter, C., Bowers, M.T. J. Am. Chem. Soc. (to be submitted).Google Scholar
  22. 22.
    “Mechanistic Studies of Processes Involving C-C Bond Cleavage in Gas-Phase Organometallic Reactions Using Product Kinetic Energy Release Distributions — Co+ Reacting with Cyclopentane,” van Koppen, P., Bowers, M.T., Beauchamp, J.L. (1990) Organometallics 9, 625.CrossRefGoogle Scholar
  23. 23.
    “Thermochemistry and Structure of CoC3H6 + — Metallacycle and Metal-Alkene Isomers,” Haynes, C., Armentrout, P.B. (1994) Organometallics 13, 3480.CrossRefGoogle Scholar
  24. 24.
    Ab initio Calculations Applied to Problems in Metal Ion Chemistry,” Bauschlicher, C.W., Langhoff, S.R., Partridge, H., in Freiser, B.S. (ed.) (1996) Organometallic Ion Chemistry, Kluwer Academic Publishers, Dordrecht, 47–88.CrossRefGoogle Scholar
  25. 25.
    “The Origin of Anomalous Bond Dissociation Energies of V+(H2)n Clusters-Comment,” Kemper, P.R., Bushnell, J.E., Maitre, P., Bowers, M.T. (1995) Chem. Phys. Lett. 242, 244.CrossRefGoogle Scholar
  26. 26.
    “Factors Affecting Sigma Bond Activation in Simple Systems — Measurement of Experimental Binding Energies of Fe+(H2)1–6 Clusters,” Bushnell, J.E., Kemper, P.R., Bowers, M.T. (1995) J. Phys. Chem. 99, 15602.CrossRefGoogle Scholar
  27. 27.
    “Binding Energies of Ti+(H2)1–6 Clusters: Theory and Experiment,” Bushnell, J.E., Maitre, P., Kemper, P.R., Bowers, M.T. (1997) J. Chem. Phys. 106, 10153.CrossRefGoogle Scholar
  28. 28.
    “Spin Change Induced in Vanadium(I) by Low-Field Ligands — Binding Energies of V+(H2)n Clusters (n=l–7),” Bushnell, J.E., Kemper, P.R., Bowers, M.T. (1993) J. Phys. Chem. 97, 11628.CrossRefGoogle Scholar
  29. 29.
    “Na+/K+· (H2)1,2 Clusters — Binding Energies From Theory and Experiment,” Bushnell, J.E., Kemper, P.R., Bowers, M.T. (1994) J. Phys. Chem. 98, 2044.CrossRefGoogle Scholar
  30. 30.
    “Insertion of Sc+ into H2 — The First Example of Cluster-Mediated Sigma-Bond Activation by a Transition Metal Center,” Bushnell, J.E.; Kemper, P.R., Maitre, P., Bowers, M.T. (1994) J. Am. Chem. Soc. 116, 9710.CrossRefGoogle Scholar
  31. 31.
    “Ni+(H2)n: Ligand Bond Energies for Ground State Ions,” Kemper, P.R., Weis, P., Bowers, M.T., (1998) Chem. Phys. Lett. 293, 503.CrossRefGoogle Scholar
  32. 32.
    “The Origin of Bonding Interactions in Cu+(H2)n Clusters: An Experimental and Thoretical Investigation,” Kemper, P.R., Weis, P., Bowers, M.T., Maitre, P. (1998) J. Am. Chem. Soc., 120, xxxx.Google Scholar
  33. 33.
    “Theoretical Study of Cr+ and Co+ Bound to H2 and N2,” Bauschlicher, C.W. Jr., Partridge, H., Langhoff, S.R. (1992) J. Phys. Chem. 96, 2475.CrossRefGoogle Scholar
  34. 34.
    “Theoretical Study of the H2-ML+ Binding Energies,” Maitre, P., Bauschlicher, C.W. Jr. (1993) J. Phys. Chem. 97, 11912.CrossRefGoogle Scholar
  35. 35.
    “Structure of Co(H2)n + Clusters, for n=l–6,” Bauschlicher, C.W. Jr., Maitre, P. (1995) J. Phys. Chem. 99, 3444.CrossRefGoogle Scholar
  36. 36.
    “Electronic and Geometric Structure of the Titanium Hydrides, TiH+ and TiH2 +,” Mavridis, A., Harrison, J.R. (1989) J. Chem. Soc. Faraday Trans. 2 85, 1391.CrossRefGoogle Scholar
  37. 37.
    Kemper, P.R., Maitre, P., Bushnell, J.E., Bowers, M.T. (in progress).Google Scholar
  38. 38.
    “Activation of Dihydrogen by Scandium Ions,” Rappé, A.K., Upton, T.H. (1986) J. Chem. Phys. 85, 4400.CrossRefGoogle Scholar
  39. 39.
    “Electronic and Geometric Structures of ScH+ and ScH2 +,” Alvarado-Swaisgood, A.E., Harrison, J.F. (1985) J. Phys. Chem. 89, 5198.CrossRefGoogle Scholar
  40. 40.
    “Activation of Carbon-Hydrogen and Carbon-Carbon Bonds by Transition-Metal Ions in the Gas Phase. Exhibition of Unique Reactivity by Scandium Ions,” Tolbert, M.A., Beauchamp, J.L. (1984) J. Am. Chem. Soc. 106, 8117.CrossRefGoogle Scholar
  41. 41.
    “Methane Dehydrogenation by Ti+ — A Cluster-Assisted Mechanism for Sigma-Bond Activation,” van Koppen, P., Kemper, P.R., Bushnell, J.E., Bowers, M.T. (1995) J. Am. Chem. Soc. 117, 2098.CrossRefGoogle Scholar
  42. 42.
    “Activation of Methane by Ti+: A Cluster Assisted Mechanism for σ-Bond Activation, Experiment and Theory,” van Koppen, P. Perry, J., Kemper, P.R., Bushnell, J.E., Bowers, M.T. (in press) Int. J. Mass Spec. Google Scholar
  43. 43.
    “Cluster Assisted Thermal Energy Activation of the H-H Bond in H2 by Ground State B+ (1S1) Ions: Overcoming a 77 kcal/mol Barrier,” Kemper, P.R., Bushnell, J.E., Weis, P., Bowers, M.T., J. Am. Chem. Soc., 120, 7577.Google Scholar
  44. 44.
    “Formation of BH6 + in the Gas Phase,” DePuy, C.H., Gareyev, R., Hankin, J., Dovico, G.E. (1997) J. Am. Chem. Soc. 119, 427.CrossRefGoogle Scholar
  45. 45.
    “Reaction Potential Surface for B+(1S) + H2 → HBH+(1Σg +), BH+(2Σ) + H(2S),” Nichols, J., Gutowski, M., Cole, S.J., Simons, J. (1992) J. Phys. Chem. 96, 644.CrossRefGoogle Scholar
  46. 46.
    “Sigma Bond Activation by Cooperative Interaction with ns2 Atoms: B+ + nH2,” Sharp, S.B., Gellene, G.I., (1998) J. Am. Chem. Soc, 120, 7585.CrossRefGoogle Scholar
  47. 47.
    “Folding Energetics and Dynamics of Macromolecules in the Gas Phase: Alkali Ion Cationized Poly(Ethylene Terephthalate) (PET) Oligomers,” Gidden, J., Wytenbach, T., Batka, J.J., Weis, P., Jackson, A.T., Scrivens, J.H., Bowers, M.T. (in press) J. Am. Chem. Soc. Google Scholar
  48. 48.
    Gatland, I.R. (1974) Case Studies of Atomic Physics 4, 369.Google Scholar
  49. 49.
    Gidden, J., Wyttenbach, T., Weis, P., Jackson, A.J., Scrivens, J.H., Bowers, M.T. (to be published).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Michael T. Bowers
    • 1
  • Paul R. Kemper
    • 1
  • Petra Van Koppen
    • 1
  • Thomas Wyttenbach
    • 1
  • Catherine J. Carpenter
    • 1
  • Patrick Weis
    • 1
  • Jennifer Gidden
    • 1
  1. 1.Department of ChemistryUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations