Applications of Transient Infrared Spectroscopy to Coordinatively Unsaturated Metal Carbonyls

  • Eric Weitz
Part of the NATO Science Series book series (ASIC, volume 535)


Details of the kinetics, bond energies and reactions mechanisms of coordinatively unsaturated metal carbonyls have been investigated in increasing detail. Much of the interest in these species arises from the fact that coordinatively unsaturated metal carbonyls can participate in a wide variety of stoichiometric and catalytic reactions [1]. These catalytic processes include olefin isomerization, hydrogenation, hydrosilation and hydroformylation. Coordinatively unsaturated metal carbonyls can often be readily and efficiently generated by UV photolysis [2].


Bond Dissociation Energy Metal Carbonyl Matrix Isolation Olefin Isomerization Iron Carbonyl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Collman, J.P., Hegedus, L.S., Norton, JR., and Finke, R.G. (1988) Principles and Applications of Organotransition Metal Chemistry, Univ. Science Books, CA 1987; Crabtree, R.H. The Organometallic Chemistry of the Transition Metals, Wiley, N.Y.Google Scholar
  2. 2.
    Geoffroy, G.L. and Wrighton, M.S, (1979) Organometallic Photochemistry, Academic, N.Y.Google Scholar
  3. 3.
    Perutz, R.N. (1985) Photochemistiy of small molecules in low-temperature matrices, Chem. Rev., 85, 97; J. K. Burdett (1978) Matrix isolation studies of transition metal carbonyls and related species, Coord. Chem. Rev. 27, 1.CrossRefGoogle Scholar
  4. 4.
    Turner, J.J. and Poliakoff, M (1983) Photochemical intermediates, ACSSymp Ser. 211, 35Google Scholar
  5. 5.
    Weitz, E. (1994) Transient infrared spectroscopy as a probe of coordinatively unsaturated metal carbonyls in the gas phase, J. Phys. Chem. 98, 11256 (1994).CrossRefGoogle Scholar
  6. 6.
    George, M.W., Haward, M.T., Hamley, P.A., Hughes, C., Johnson, F.P.A., Popov, V.K., Poliakoff, M. (1993) Infrared spectroscopic study of the photochemical substitution and oxidative addition-reactions of (η5-C5R5) M(CO)4 compounds of the Group-5 metals — characterization of the products of reaction with N2, H2 and HSiEt3−xClx and the kinetic investigation of (η5-C5R5)M(CO)3 intermediates, J. Am. Chem. Soc., 115, 2286–2299CrossRefGoogle Scholar
  7. 7.
    Rayner, D.M., Ishikawa, Y.-I., Brown, C. E and Hackett, P. A, (1993) Photodissociation dynamics of metal-carbonyls-branching ratios and bond-dissociation energies, in Laser Chemistiy of Organometallies, Chaiken, J. Ed., ACS Symposium Series, 530, 96; Rayner, D.M., Ishikawa, Y., Brown, O.E., and Hackett, P.A. (1991) Brandling ratios and bond dissociation energies from the excimer laser photolysis of group 6 metal carbonyls, J. Chem. Phys. 94, 5471Google Scholar
  8. 8.
    Ishikawa, Y.-I., Brown, C. E, Hackett, P.A., and Rayner, D. M. (1990) Excimer laser photolysis of group 6 metal carbonyls in the gas phase, J. Phys. Chem. 94, 2404.Google Scholar
  9. 9.
    Wang, W., Jin, P., Liu, Y., She, Y., and Fu, K.-J. (1992) UV laser photolysis of (η6-C6H6)Cr(CO)3: Time-resolved infrared studies of gas-phase (η6-C6H6)(Cr(CO)x (x=2 and 1), J. Phys. Chem, 96, 1278CrossRefGoogle Scholar
  10. 10.
    Fletcher, T.R. and Rosenfeld, R.N. (1988) Recombination of Cr(CO)n with CO: Kinetics and bond dissociation energies, J. Am. Chem. Soc. 110, 2097; (1990), 94, 2203CrossRefGoogle Scholar
  11. 11.
    Breheny, C.J., Draper, S.M., Grevels, F.W., Klotzbucher, W.E., Long, C., Pryce, M.T., Russell, G. (1996) Photochemistry of (η6-2,6-X2C5H3N)Cr(CO)3 (X=H, CH3, (CH3)3Si). First example of a photoinduced ring-slip at an (η6-arene)M(CO)3 center. Molecular structures of (η6-2,6-(CH3)2 C5H3N)Cr(CO)3 and (η6-2,6-((CH3)3Si)2 C5H3N)Cr(CO)3, Organometallics, 15, 3679–3687CrossRefGoogle Scholar
  12. 12.
    Fletcher, T.R. and Rosenfeld, R.N. (1983) Photofragmentation dynamics of Cr(CO)6 in the gas phase, J. Am. Chem. Soc. 105, 6358CrossRefGoogle Scholar
  13. 13.
    Ishikawa, Y and Arai, S (1996) Coordination reaction of NO onto W(CO)5 in the gas phase, Chem. Phys. Letters 253 230–235CrossRefGoogle Scholar
  14. 14.
    Colombo, M., George, M.W., Moore, J.N., Pattison, D.I., Perutz, R.N., Virrels, I.G. and Ye, T.Q. (1997) Ultralast reductive elimination of hydrogen from a metal carbonyl dihydride complex; a study by time-resolved IR and visible spectroscopy, J. Chem. Soc. Dalton Trans. 17 2857; Abbott, L.C., Arnold, C.J., Ye, T.Q., Gordon, K.C., Perutz, R.N., Hester, R.E., Moore, J.N. (1998) Ultrafast time-resolved UV-visible and infrared absoiption spectroscopy of binuclear rhenium(I) polypyridyl complexes in solution, J. Phys. Chem. A, 102, 1252CrossRefGoogle Scholar
  15. 15.
    Sprague, J.R., Arrivo, S.M. and Spears, K.G. ( 1991 ) Identification of uncoordinated Cr(CO)5 intermediates in cyclohexane with picosecond time-resolved IR spectroscopy, J. Phys. Chem. 95, 10528.CrossRefGoogle Scholar
  16. 16.
    Grubbs, W.T., Dougherty, T.P., and Heilweil, E.J. (1994) Vibrational-energy redistribution in Cp*-η5-pentamethylcyclopentadienyl studied by broad-band transient infrared-spectroscopy, Chem. Phys. Letters 227, 480CrossRefGoogle Scholar
  17. 17.
    Bromberg, S.E., Yang, H., Asplund, M.C., Lian, T., McNamara, B.K., Kotz, K.T., Yeston, J.S., Wilkens, M., Frei, H., Bergman, R.G., Harris, C.B. (1997) The mechanism of a C-H bond activation reaction in room-temperature alkane solution. Science 278, 260CrossRefGoogle Scholar
  18. 18.
    Boese, W., Mc Farlane, K., Lee, B., Rabor, J. and Ford, P.C. ( 1997) Photochemistry as a tool for elucidating organometallic reaction mechanism, Coordination Chemistry Reviews, 159, 135; Ford, P.C. and Boese, W.T., (1997) Time-resolved infrared studies of migratory insertion mechanism in manganese carbonyls, Advances in Chemistiy Series, 253, 221CrossRefGoogle Scholar
  19. 19.
    Wermer, P.H., and Dobson, G.R. ( 1989) Octahedral metal-carbonyls.67. Rates of reaction of olefins with cis-[((chlorobenzene)(triphenylphophine tetracarbonyltungsten(0)] produced via pulsed laser flash-photolysis, J. Coord. Chem., 20, 125CrossRefGoogle Scholar
  20. 20.
    Wasserman, E.P., Moore, C.B. and Bergman, R.G. (1992) Gas phase rates of alkane C-H oxidative addition to a transient CpRh(CO) complex, Science 225, 315.CrossRefGoogle Scholar
  21. 21.
    Chaiken, J. ( 1993) Ed., Laser Chemistry of Organometallics, A.C.S. Symposium Series #530.Google Scholar
  22. 22.
    McNamara, B., Townes, M.H., and Grant, E.R. ( 1995) Organometallic stability and structure-elementary rates of unimolecular decomposition in chromium olefin carbonyls, J. Am. Chem. Soc., 117, 12254; Weiller, B.H. and Grant, E.R. (1989) in Gas Phase Inorganic Chemistiy, pg. 277 edited by D. H. Russell, Plenum Press, N.Y.CrossRefGoogle Scholar
  23. 23.
    Weiller, B.H. and Grant, E.R. (1988) Gas-phase organometallic kinetics 3. The observation and CO substitution kinetics of cis-Cr(CO)4(C2H4)2 by time-resolved infrared-absorption spectrometry, J. Phys. Chem. 92, 1458 (1988); Duray, S.J., Becher, D.M. and Grant, E.R. (1988) Elementary rate-processes in the dissociative CO for C2H4 substitution-reactions of organometallic complexes in the gas-phase, Laser Chem. 9, 63Google Scholar
  24. 24.
    Weitz, E. (1987) Studies of coordinatively unsaturated metal carbonyls in the gas phase by transient infrared spectroscopy, J. Phys. Chem. 91, 3945CrossRefGoogle Scholar
  25. 25.
    Gravelle, S. J., van de Burgt, L. J and Weitz, E. (1993) A time-resolved infrared study of the gas-phase reactions of 1,3-and 1,4-pentadiene with Fe(CO)3 and Fe(CO)4, J. Phys. Chem. 97, 5272); Gravelle, S.J. and Weitz E. (1990) A time-resolved ℝ study of the gas-phase reactions of 1,3 and 1,4 pentadiene with Cr(CO)4, J. Am. Chem. Soc. 112, 7839.CrossRefGoogle Scholar
  26. 26.
    Poliakoff, M. and Weitz, E. (1987) Shedding light on organometallic reactions: The characterization of Fe(CO)4, a prototypical reaction intermediate, Accts. Chem. Res. 20, 408.CrossRefGoogle Scholar
  27. 27.
    Poliakoff M. and Weitz, E. ( 1986) Detection of transient organometallic species by fast time-resolved IR spectroscopy, Advances in Organometallic Chemistry, 25, 277.CrossRefGoogle Scholar
  28. 28.
    Wells, J.R., House, P.G. and Weitz, E. (1994) Interaction of H2 and prototypical solvent molecules with Cr(CO)5 in the gas phase, J. Phys. Chem., 98, 8343CrossRefGoogle Scholar
  29. 29.
    George, M.W., Poliakoff, M. and Turner, J.J. (1994) Nanosecond time-resolved infrared spectroscopy: A comparative view of spectrometers and their applications in organometallic chemistry, Analyst, 119, 551CrossRefGoogle Scholar
  30. 30.
    Ryther, R.J. and Weitz, E. (1992) Diode laser probes of the product distribution of coordinatively unsaturated iron carbonyls produced following excimer laser photolysis of Fe(CO)5 in the gas phase, J. Phys. Chem., 96, 2561.CrossRefGoogle Scholar
  31. 31.
    Nathanson, G., Gitlin, B., Rosan, A.N. and Yardley, J.T. (1981) Ultraviolet laser photolysis: Primary photochemistry of Fe(CO)5 in PF3, J. Chem. Phys. 74, 361CrossRefGoogle Scholar
  32. 32.
    Weitz, E., Wells, J.R., Ryther, R.J. and House, P. ( 1993) Bond energies and reaction kinetics of coordinatively unsaturated metal carbonyls, A.C. S. Symp. Ser. 530, 147CrossRefGoogle Scholar
  33. 33.
    Ryther, R.J. and Weitz, E. (1991) Reaction kinetics of coordinatively unsaturated iron carbonyls formed in gas-phase excimer laser photolysis of Fe(CO)5, J. Phys. Chem. 95, 9841.CrossRefGoogle Scholar
  34. 34.
    House, P.G. and Weitz, E. (1997) Reactions of molecular nitrogen and triethylamine with coordinatively unsaturated iron carbonyls: spin effects on reaction, Chem. Phys. Letters 266, 239CrossRefGoogle Scholar
  35. 35.
    Seder, T.A., Church S.P. and Weitz, E. (1986) The wavelength dependence of excimer laser photolysis of Cr(CO)6 in the gas phase. A study of the infrared spectroscopy and reactions of Cr(CO)x (x = 5,4,3,2) fragments, J. Am. Chem. Soc. 108, 4721CrossRefGoogle Scholar
  36. 36.
    Bogdan, P.L. and Weitz, E. (1989) A transient infrared spectroscopy study of coordinatively unsaturated ruthenium carbonyls, J. Am. Chem. Soc. 111, 3163; ibid (1990) A transient infrared spectroscopy study of coordinatively unsaturated osmium carbonyl compounds, J. Am. Chem. Soc. 112, 639 (1990)CrossRefGoogle Scholar
  37. 37.
    Wells, J.R. and Weitz, E. (1992) Rare gas-metal carbonyl complexes: bonding of rare gas atoms to the group VI pentacarbonyls, J. Am. Chem. Soc. 114, 2783.CrossRefGoogle Scholar
  38. 38.
    Perutz, R.N. and Turner, J.J. (1975) Photochemistry of the Group 6 hexacarbonyls in low — temperature matrices III. Interaction of the pentacarbonyls with noble gases and other matrices, J. Am. Chem. Soc. 97, 4800CrossRefGoogle Scholar
  39. 39.
    Bates, R.D. Jr., Flynn, G.W., Knudtson, J.T., and Ronn, A.M. ( 1970) Laser-induced 16µ fluorescence in sulfur hexalluoride: Acoustic effects, J. Chem. Phys. 53, 3621CrossRefGoogle Scholar
  40. 40.
    Seder, T.A., Ouderkirk, A.J. and Weitz, E. (1986) The wavelength dependence of excimer laser photolysis of Fe(CO)5 in the gas phase: Transient infrared spectroscopy and kinetics of Fe(CO)x (x = 4,3,2) photofragments, J. Chem. Phys. 85, 1977CrossRefGoogle Scholar
  41. 41.
    Barton, T.J., Grinter, R. and Thomson, A.J. (1977) Magnetic circular dichroism evidence for the paramagnetism of tetracarbonyl iron(O): Low-temperature matrix studies, J. Chem. Soc. Chem. Comm. 841 Google Scholar
  42. 42.
    Daniel, C., Benard, M., Dedieu, A., Wiest, R. and Veillard, A. (1984) Theoretical aspects of the photochemistry of organometallics 3. Potential energy curves for the photodissociation of Fe(CO)5, J. Phys. Chem. 88, 4805CrossRefGoogle Scholar
  43. 43.
    Smirnov, N.V.(1993) Thermal dissociation and bond energies of iron carbonyls Fe(CO)n (n=l–5), Kinetics and Catalysis (Eng. Transi.) 34, 52Google Scholar
  44. 44.
    Long, G, (1998) Probing the kinetics and energetics of metal carbonyl-catalyzed olefin isomerization in the gas phase by time-resolved infrared spectroscopy, Ph.D. thesis, Northwestern University, Evanston IL..Google Scholar
  45. 45.
    Poliakoff, M. (1974) Infrared spectrum of matrix isolated tricarbonyliron, J. Chem. Soc. Dalton Trans. 210Google Scholar
  46. 46.
    Marks, T.J., (1989) ed., Bonding energetics in organometallic compounds, A.C.S. Symposium Series, Vol. 428.Google Scholar
  47. 47.
    Lewis, K.E., Golden, D.M. and Smith, G.P. (1984) Organometallic bond dissociation energies: laser pyrolysis of Fe(CO)5, Cr(CO)6, Mo(CO)6 and W(CO)6 J. Am. Chem. Soc. 106, 3905CrossRefGoogle Scholar
  48. 48.
    Ishikawa, Y., Brown, C.E., Hackett, P.A. and Rayner, D.M. (1988) Chem Phys. Lett. 150, 506; Brown, C.E., Ishikawa, Y., Hackett, P.A. and Rayner, D.M. (1990) Interaction of alkanes with unsaturated metal centers. 2. Complexes of alkanes and fluoroalkanes with W(CO)5 in the gas phase, J. Am. Chem. Soc. 112, 2530CrossRefGoogle Scholar
  49. 49.
    Peters, K.S., and Synder, G.J. (1988) Science 241 1053; Walsh, E.F., George, M.W., Goff, S., Nikiforov, S.M., Popov, V.K., Sun, X.Z., Poliakoff, M., (1996) Energetics of the reactions of (η6-C6H6)Cr(CO)3 with n-heptane, N2, and H2 studied by high-pressure photoacoustic calorimetry, J. Phys. Chem., 100, 19425CrossRefGoogle Scholar
  50. 50.
    Morse, J.M., Parker, G.H., and Burkey, T.J. (1989) Enthalpy of CO dissociation from M(CO)6 (M=Cr, Mo, W) in alkane solvent: Determination of intermolecular agostic bond strengths, Organometallics 8, 2471CrossRefGoogle Scholar
  51. 51.
    Tilset, M., Hamon, J.R. and Hamon, P. (1998) Relative M-X bond dissociation energies in 16-, 17-and 18-electron organotransition-metal complexes (X=halide, H), Chem. Comm. 765; Pedersen, A., Skagestad, V. and Tilset, M. (1995) Thermodynamic acidities and homoltyic metal-hydrogen bond-energies of Group-8 protonated decamethylmetallocenes Cp*2MH+(M=Ru, Qs), Acta Chem. Scand. 49, 632Google Scholar
  52. 52.
    Tjelta, B.L. and Armentrout, P.B. (1996) Ligand effects in C-H and C-C bond activation by gas-phase transition metal-ligand complexes, J. Am. Chem. Soc. 118, 9652; Armentrout, P.B. and Baer, T. (1996) Gas-phase ion dynamics and chemistry, J. Phys. Chem. 100, 12866; Armentrout, P.B. (1995) Building organometallic complexes from the bare metal — thermochemistry and electronic-structure along the way, Acct. Chem. Res. 28, 430CrossRefGoogle Scholar
  53. 53.
    Bogdan, P.C., Wells, J.R. and Weitz, E. (1991) Bond dissociation energies and kinetics for the reaction of W(CO)5 with the unlikely ligands N2O and CF2Cl2 J. Am. Chem. Soc. 113, 1294.CrossRefGoogle Scholar
  54. 54.
    House, P.G. and Weitz, E. (1997) A gas phase study of the kinetics of formation and dissociation of Fe(CO)4L and Fe(CO)3L2 (L=C2H4 and C2F4), J. Phys. Chem. A 101, 2988.CrossRefGoogle Scholar
  55. 55.
    Dewar, M.J.S., (1951), A review of the π-complex theory, Bull. Soc. Chim. Fr., 18, C79 (1951); Chatt, J. and Duncanson, L.A. (1953) Olefin co-ordination compounds. Part III. Infra-red spectra and structure: Attempted preparation of acetylene complexes, J. Chem. Soc. 2939Google Scholar
  56. 56.
    Halpern, J. (1985) Activation of carbon-hydrogen bonds by model complexes: Mechanistic, kinetic and thermodynamic considerations, Inorg. Chim. Acta, 100, 41; Halpern, J. (1982) Determination and significance of transition metal alkyl bond dissociation energies, Acc. Chem. Res. 15, 238CrossRefGoogle Scholar
  57. 57.
    Wang, W., Narducci, A., House, P. and Weitz, E. (1996) A gas phase study of the formation and dissociation of Fe(CO)4H2: Kinetics and bond dissociation energies, J. Am. Chem. Soc. 118,8654CrossRefGoogle Scholar
  58. 58.
    Wang, W. and Weitz, E. (1997) A Theoretical Study of the Reaction: H2 + Fe(CO)4 ⇋ H2Fe(CO)4, J. Phys. Chem. A 101, 2358CrossRefGoogle Scholar
  59. 59.
    Tilset, M. and Parker, V.D. (1989) Solution homolytic dissociation energies of organotransition-metal hydrides, J. Am. Chem. Soc. 111, 6711; ibid (1990) 112, 2843CrossRefGoogle Scholar
  60. 60.
    Long, G.T., Wang, W. and Weitz, E. (1995) A real time spectroscopic probe of β-hydrogen transfer in the gas phase: Formation of HFe(CO)33-C3H5), J. Am. Chem. Soc. 117, 12810CrossRefGoogle Scholar
  61. 61.
    Johnson, F.P.A., Gordon, C.M., Hodges, P.M., Poliakoff, M. and Turner, J.J. (1991) Photochemistry of [M(η5-C5H5)(CO)3Et] (M = Mo or W): A mechanistic study using time-resolved infrared spectroscopy and matrix isolation, J. Chem. Soc., Dalton Trans. 833.Google Scholar
  62. 62.
    Hayes, D.M. and Weitz, E. (1991) A study of the kinetics of reaction of Fe(CO)3 and Fe(CO)3(L) with H2 and C2H4 for L = H2 and C2H4 by transient infrared spectroscopy: Reactions relevant to olefin hydrogenation kinetics, J. Phys. Chem. 95, 2723CrossRefGoogle Scholar
  63. 63.
    Mitchner, J.C. and Wrighton, M.S. (1983) Low-temperature photochemistry of Fe(CO)4(ethylene) and Fe(C4O) (propylene). Spectroscopic observation of catalytically significant intermediates, J. Am. Chem. Soc. 105, 1065CrossRefGoogle Scholar
  64. 64.
    Bamhart, T.M. and McMahon, R.J. (1992) Spectroscopic observation of a thermal C-H bond insertion reaction at 5K: Intramolecular rearrangement of Fe(CO)32-C3H6) to produce HFe(CO)33-C3H5)., J. Am. Chem. Soc. 114, 5434CrossRefGoogle Scholar
  65. 65.
    Yang, G.K., Peters, K.S. and Vaida, V. (1986) Dynamics of intermediates in the α-and β-elimination processes in CpW(CO)2Me and CpW(CO)2Et, J. Am. Chem. Soc. 108, 2511.CrossRefGoogle Scholar
  66. 66.
    Long, G.T., and Weitz, E., to be published.Google Scholar
  67. 67.
    van Wüllen, C., (1996) A relativistic Kohn-Sham density functional procedure by means of direct perturbation theory II. Application to the molecular structure and bond dissociation energies of transition metal carbonyls and related complexes, J. Chem. Phys. 105, 5485; Dapprich, S., Pidun, U., Ehlers, A.W., and Frenking, G. (1996) The calculation of bond dissociation energies of transition metal complexes by isostructural reactions, Chem. Phys. Letters, 242, 521; Wittborn, A.M.C., Costas, M, Blomberg, M.R.A. and Siegbahn, P.E.M. (1997) The C-H activation reaction of methane for all transition metal atoms from the three transition rows, J. Chem. Phys, 107, 4318; Musaev, D.G., Svensson, M., Morokuma, K., Stromberg, S., Zetterberg, K. and Siegbahn (1997) Density functional study of the mechanism of the palladium(II)-catalyzed ethylene polymerization reaction, Organometallics 16, 1933; Folga, E. and Ziegler, T. (1993) A density functional study on the strength of the metal bonds in Co2(CO)8 and Mn2(CO)10 and the metal-hydrogen and metal-carbon bonds in R-Mn(CO)5 and R-Co(CO)5, J. Am. Chem. Soc., 115, 5169; Connor, J.A., Zafarani-Moattar, M.T., Bickerton, J., El Saied, N.I., Suradi, S., Carson, R, Al Takliim, G. and Skinner, H.A. (1992) Enthalpy of formation of acyl-alkyl and hydridopentacarbonyl manganese complexes. The enthalpy contribution of manganese-hydrogen and manganese-carbon bonds in these molecules. Thermochemical aspects of models in Fischer-Tropsch reactions, Organometallics, 1, 1166; Barnes, L.A., Rosi, M. and Bauschlicher, C.W. (1991) An ab-initio study of Fe(CO)n, n=1,5 and Cr(CO)6, J. Chem. Phys. 94, 2031CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Eric Weitz
    • 1
  1. 1.Department of ChemistryNorthwestern UniversityEvanstonUSA

Personalised recommendations