Skip to main content

Critical- and Wetting-Phenomena Near the Liquid-Vapour Critical Point of Metals

  • Chapter
High Pressure Molecular Science

Part of the book series: NATO Science Series ((NSSE,volume 358))

  • 415 Accesses

Abstract

Our understanding of the liquid-vapour equilibrium in metallic systems has increased enormously in the past two decades. Much of this has been stimulated by a series of pioneering papers of Mott [1] on the metal-non-metal transition which shows up when a liquid metal is heated to the region of the liquid-vapour critical point. The existence of this transition implies that the liquid-vapour phase transition of fluid metals is distinct from that of normal insulating fluids such as inert gases. An inert-gas atom retains its identity in the condensed phase and the pair potential which determines the properties of the dilute vapour phase is supplemented to a limited degree by many-body interactions, in the total potential energy of the dense phase [2]. In contrast, the electronic structures of the two coexisting phases, liquid and vapour, of fluid metals may be vastly different. The essntial point is that the metallic state is a collective phenomenon existing only when the density of atoms is sufficiently large. Unlike inert gases the electronic stucture in the high-density liquid is very different from that of an atom in the dilute vapour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1] Mott, N.F. (1974), Metal-Insulator Transitions (London: Taylor & Francis), and reterences therein

    Google Scholar 

  2. [2] Barker, J.A. (1976) Rare Gas Solids, Vol. I, edited by H.L. Klein and J.A. Venables (New York: Academic Press), p. 587

    Google Scholar 

  3. [3] Shimoji, M (1977) Liquid Metals (London: Academic)

    Google Scholar 

  4. [4] Laudau, L., Zeldovitch, G. (1943) ActaPhys.-chim. URSS, 18, 194 „On the relation between the liquid and the gaseous state of metals” and „translation of the Collected Papers of Landau, L.D., ed. D. ter Haar, Oxford, (1965), 380. „On the relation between the liquid and the gaseous state of metals.”

    Google Scholar 

  5. [5] Hensel, F. (1988) The Liquid-vapour phase transition in fluid mercury, Advances in Physics 44, 3–19

    Article  Google Scholar 

  6. [6] Hensel, F., Stolz, M., Hohl, G. Winter, R., Götzlaff, W., (1991) Critical phenomena and the metal-nonmetal transition in liquid metals,, J.Phys.Colloq., C5-supplement 1, 191–205

    Google Scholar 

  7. [7] Freyland, W., (1981), Metal-Nonmetal transition in expanded fluid alkali metals, Comments Solid State Physics, 10, 1–10

    CAS  Google Scholar 

  8. [8] Oelhafen, P. Indlekofer, G., Günterodt, H.-J., (1988), Valence Electron Structure of Heavy Polyvalent Liquid Metals from Mercury to Bismuth, Z.Phys.Chem. N.F., 157, 483–488

    Article  CAS  Google Scholar 

  9. [9] Hefner, W., Schmutzler, R.W. and Hensel, F., (1980) Optical Reflectivity Measurement of Fluid Mercury, J.Phys., Paris 41, C8-62–65

    Google Scholar 

  10. [10] Even, U. and Jortner, J., (1972) Evidence for the Foundation of a Pseudogap in a Divalent Metal, Phys.Rev.Lett. 28, 31–34

    Article  CAS  Google Scholar 

  11. [11] Warren, W.W. and Hensel, F. (1982) Knight shift and dielectric anomaly in fluid mercury, Phys.Rev.B. 26, 5980–5982

    Article  CAS  Google Scholar 

  12. [12] Kresse, G. and Hafner, J. (1997) Ab initio simulation of the metal/nonmetal transition in expanded fluid mercury, Phys.Rev.B. 55, 7539–7548

    Article  CAS  Google Scholar 

  13. [13] Knuth, B., Hensel, F. and Warren, Jr., W.W. (1997) Optical Reflectivity And Electron Mass Enhancement in Expanded Liquid Cesium, J.Phys:Condens. Matter 9, 2693–2698

    Article  CAS  Google Scholar 

  14. [14] Freyland, W. (1979) Magnetic susceptibility of metallic and nonmetallic expanded fluid cesium, Phys.Rev.B., 20, 5104–5110

    Article  CAS  Google Scholar 

  15. [15] Warren, Jr., W.W., Brennen, G.F., El-Hannany, U., (1989) NMR investigation of the electronic structure of expanded liquid cesium, Phys.Rev.B., 39, 4038–4050

    Article  CAS  Google Scholar 

  16. [16] Mott, N.F. (1978) Continuous and discontinuous metal-insulator transition, Phil.Mag. B37, 377–386

    Article  Google Scholar 

  17. [17] Hensel, F. and Hohl, G.F. (1994), Expanded Fluid Alkali Metals, The Review of High Pressure Science and Technology, Vol. 3, No. 2 165–179

    Article  Google Scholar 

  18. [18] Winter, R., Bodensteiner, T., Gläser, W., Hensel, F. (1987) The Static Structure Factor of Cesium over the whole Liquid Range up to the Critical Point, Ber. Bunseges. Phys.Chem., 91, 1327–1330

    CAS  Google Scholar 

  19. [19] Redmer, R. and Warren Jr. W.W. (1993) Magnetic susceptibility of Cs and Rb from the vapour to the liquid phase, Phys.Rev.B. 48, 14892–14906

    Article  CAS  Google Scholar 

  20. [20] Redmer, R., Reinholz, H., Röpke, G, Winter, R., Noll, F., Hensel, F.(1992) The electrical conductivity of expanded liquid caesium, J.Phys.: Condens. Matter, 4, 1659–1669

    Article  CAS  Google Scholar 

  21. [21] Jüngst, S., Knuth, B., Hensel, F.(1985) Observation of singular diameters in the coexistence curve of Metals, Phys.Rev.Lett. 55, 2160–2163

    Article  Google Scholar 

  22. [22] Yao, M. and Hensel, F. (1996) Wetting of mercury on sapphire, J.Phys.Conden: Matter 8, 9547–9551

    Article  CAS  Google Scholar 

  23. [23] Kozhevnikov, V.F., Arnold, D.I., Naurzakov, S.P. and Fisher, M.E. (1997) Prewetting Transitions in a Near Critical Metallic Vapor, Phys.Rev.Lett. 78, 1735–1738

    Article  CAS  Google Scholar 

  24. [24] Cahn, J.W. (1977) Critical Point Wetting J.Chem.Phys. 66, 3667–3672

    Article  CAS  Google Scholar 

  25. [25] Dietrich, S. (1988) Wetting Phenomena, in Phase Transitions and Critical Phenomena, Vol. 12,1 ed. By C. Domb and J.L. Lebowitz, Academic, London

    Google Scholar 

  26. [26] Rutledge, J.E. and Taborek, P. (1992) Prewetting Phase Diagram of 4He on Cesium, Phys.Rev.Lett. 69, 937–940

    Article  CAS  Google Scholar 

  27. [27] Cheng, E., Mistura, G., Lee, H.C., Chan, M.H.W., Cole, M.W., Carraro, C., Saam, W.F. and Toigo, F. (1993) Wetting Transitions of Liquid Hydrogen Films, Phys.Rev.Lett. 70, 1854–1857

    Article  CAS  Google Scholar 

  28. [28] Berning, H.P. (1963) Physical Properties of Thin Films vol 1, ed. G. Hass New York: Academic

    Google Scholar 

  29. [29] Omata, K. and Yonezowa, F. (1998) Monte Carlo study of the prewetting supercritical phase, Vol. 10, 11599–11602

    CAS  Google Scholar 

  30. [30] Tamura, K., Inui, M. Nakaso, I., Oh’ishi, K. Funakoshi, K. and Utsumi, W. (1998) X-ray diffraction studies of expanded fluid mercury using synchrotron radiation, J.Phys.: Condens. Matter 10, 11405–11417

    Article  CAS  Google Scholar 

  31. [31] Tamura, K. and Hosokawa, S. (1994) J.Phys.: Condens. Matter 6, A241

    Article  CAS  Google Scholar 

  32. [32] Koperski, J., Atkinson, J.B. and Krause, L. (1997) The Excitation and Fluorescence Spectra of Hg2 Excited in a Supersonic Jet, J. of Mol. Spectr. 184, 300–308

    Article  CAS  Google Scholar 

  33. [33] Barocchi, F. Hensel, F. and Sampoli, M. (1995) Induced Pair Polarizability Ansotropy in Mercury from Depolarized Interaction Induced Light Scattering Spectra, Chem.Phys.Lett. 232, 445–450

    Article  CAS  Google Scholar 

  34. [34] Kunz, C.F., Hättig, C. and Hess, B.A. (1996) Ab initio study of the individual interaction energy components in the ground state of the mercury dimer, Mol.Phys. 89, 139–157

    Article  CAS  Google Scholar 

  35. [35] Rademann, K., Kaiser B, Even, U.and Hensel, F. (1987) Size Dependence of the Gradual Transition to Metallic Properties In Isolated Mercury Clusters, Phys.Rev.Lett. 59, 2319–2321

    Article  CAS  Google Scholar 

  36. [36] Weir, S.T., Mitchell, A.C., and Nellis, W.J. (1996) Metallization of Fluid Hydrogen at 140Gpa (1.4 Mbar), Phys.Rev.Lett. 76, 1860–1863

    Article  CAS  Google Scholar 

  37. [37] Pilgrim, W.-C., Winter, R., Hensel, F., Morkel, C. and Gläser, W. (1991) The Dynamic Structure Factor of Expanded Rubidium, Ber. Bunsenges.Phys.Chem., 95, 1133–1136

    Article  CAS  Google Scholar 

  38. [38] Pilgrim, W.-C., Ross, M., Yang, L.H. and Hensel, F., (1997) The Monoatomic-Molecular Transition in Expanded Rubidium, Phys.Rev.Lett. 78, 3685–3688

    Article  CAS  Google Scholar 

  39. [39] Copley, J.R.D. and Rowe, J.M., (1974), Short-Wavelength Collective Excitations in Liquid Rubidium Observed by Coherent Neutron Scattering, Phys.Rev.Lett. 32, 49–52

    Article  CAS  Google Scholar 

  40. [40] Mao, H.K. and Hemly, R.J. (1994) Ultrahigh-pressure transitions in solid hydrogen, Rev.Mod.Phys.. 66, 671–691

    Article  CAS  Google Scholar 

  41. [41] Ashcroft, N.W. (1994) The Dense Hydrogen Plasma: Translational Orientational And Electronic Structure, in: „Elementary Processes in Dense Plasma, ed. By S. Ichimaru and S. Ogata, Addison-Wesley, Reading, 251–270

    Google Scholar 

  42. [42] Herzfeld, K.F. (1927) On Atomic Properties Which Make an Element a Metal, Phys.Rev. 29, 701–705

    Article  CAS  Google Scholar 

  43. [43] Hensel, F. and Edwards, P.P. (1996) Hydrogen, The First Alkali Metal, Chem.Eur.J. 2, 1201–1203

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hensel, F. (1999). Critical- and Wetting-Phenomena Near the Liquid-Vapour Critical Point of Metals. In: Winter, R., Jonas, J. (eds) High Pressure Molecular Science. NATO Science Series, vol 358. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4669-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4669-2_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5807-7

  • Online ISBN: 978-94-011-4669-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics