Experimental Techniques in the Diamond Anvil Cell

  • D. J. Dunstan
Part of the NATO Science Series book series (NSSE, volume 358)


The operating principles of diamond-anvil high pressure cells are reviewed, with particular attention to the implications for design and construction. The diamond culets and gasket generate the pressure, and their behaviour dictates the requirements for the rest of the cell. The axial alignment mechanism is crucial, while tilt alignment is less important. The implication for piston-cylinder designs is that the clearance of the piston in the bore is critical, while the length of the piston is not. Good practice in the design of drive mechanisms is discussed. Finally, we consider alternatives to the standard piston-cylinder mechanism. Flexure movements, and their basic design rules are presented.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    1. Eremets, M.I. (1996) High Pressure Experimental Methods, Oxford University Press, Oxford.Google Scholar
  2. 2.
    2. Schroeder, W., and Webster, D.A. (1949) Press-forging thin sections: Effects of friction, area and thickness on pressures required, J. Appl. Mech. 16, 279–294.Google Scholar
  3. 3.
    3. Dunstan, D.J. (1989) Theory of the gasket in diamond anvil high-pressure cells, Rev. Sci. Instrum. 60, 3789–3795.CrossRefGoogle Scholar
  4. 4.
    4. Euler, L. (1744) Methodus inveniendi linea curvos maximi minimive proprieatare gaudentes, Lausanne.Google Scholar
  5. 5.
    5. Besson, J.M., and Pinceaux, J.P. (1979) Melting of helium at room temperature and high pressure, Science 206, 1073–1075.CrossRefGoogle Scholar
  6. 6.
    6. Eremets, M.I., Krasnovskij, O.A., Struzhkin, V.V., Timofeev, Yu. A., and Shirokov, A.M. (1990) Method of low-temperature optical measurements with diamond anvil cells, High Pressure Research 5, 880–884.CrossRefGoogle Scholar
  7. 7.
    7. Piermarini, G.J., Block, S., and Barnett, J.S. (1973) Hydrostatic limits in liquids and solids to 100 kbar, J. Appl. Phys. 44, 5377–5382.CrossRefGoogle Scholar
  8. 8.
    8. Fujishiro, I., Piermarini, G.J., Block, S., and Munro, R.G. (1982) Viscosities and glass transition pressures in the methanol-ethanol-water system, Proc. 8th AIRAPT Conf., Uppsala, ed. CM. Backman, T. Johannisson and L. Temer, Vol.2 pp. 608–611.Google Scholar
  9. 9.
    9. Spain, I.L., and Dunstan, D.J. (1989) The technology of diamond anvil high pressure cells: II. Operation and use, J. Phys. E: Sci. Instrum. 22, 923–933.CrossRefGoogle Scholar
  10. 10.
    10. Fujishiro, I., and Nakamura, Y. (1987) Viscosity measurements under high-pressure by diamond anvil cell, J. Jap. Soc. Lubrication Engineers 32, 401–404.Google Scholar
  11. 11.
    11. King, H.E., Herbolzheimer, E., and Cook, R.L. (1992), The diamond-anvil cell as a high-pressure viscometer, J. Appl. Phys. 71, 2071–2081.CrossRefGoogle Scholar
  12. 12.
    12. Cook, R.L., Herbst, C.A., and King, H.E. (1993) High-pressure viscosity of glass-forming liquids measured by the centrifugal force diamond anvil cell viscometer, J. Phys. Chem. 97, 2355–2361.CrossRefGoogle Scholar
  13. 13.
    13. Frogley,M.D. (1998) this conference.Google Scholar
  14. 14.
    14. Whitaker, M.F., and Dunstan, D.J. (1998) Raman spectroscopy of GaAs and InGaAs under pressure, J. Phys. Cond. Matter (submitted).Google Scholar
  15. 15.
    15. Besson, J.M., Itié, J.P., Polian, A., Weill, G., Mansot J.L., and Gonzalez, J (1991) High-pressure phase-transition and phase-diagram of gallium-arsenide, Phys. Rev. B 44, 4214–4234.CrossRefGoogle Scholar
  16. 16.
    16. Adams, D.M. (1998) private communication.Google Scholar
  17. 17.
    17. Adams, D.M., and Shaw, A.C. (1982) A computer-aided design study of the behaviour of diamond anvils under stress, J. Phys. D 15, 1609–1635.CrossRefGoogle Scholar
  18. 18.
    18. Dunstan, D.J. (1991) Soldering diamonds into the diamond anvil cell, Rev. Sci. Instrum. 62, 1660–1661.CrossRefGoogle Scholar
  19. 19.
    19. Dunstan, D.J., and Spain, I.L. (1989) The technology of diamond anvil high pressure cells I. Principles, design and construction, J. Phys. E: Sci. Instrum 22, 913–923.CrossRefGoogle Scholar
  20. 20.
    20. Dunstan, D.J., and Schemer, W. (1988) A miniature cryogenic diamond anvil high pressure cell, Rev. Sci. Instrum. 59, 627–630.CrossRefGoogle Scholar
  21. 21.
    21. Merrill, L., and Bassett, W.A. (1974) Miniature diamond anvil pressure cell for single crystal x-ray diffracon studies, Rev. Sci. Instrum. 45, 290–294.CrossRefGoogle Scholar
  22. 22.
    22. Geary, P.J. (1961), Flexure Devices. Pivots, Movements, Suspensions, British Scientific Instruments Research Association, Chislehurst.Google Scholar
  23. 23.
    23. Trylinski, T. (1971) Fine Mechanisms and Precision Instruments, Pergamon Press, Oxford.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • D. J. Dunstan
    • 1
  1. 1.Physics Department, Queen Mary and Westfield CollegeUniversity of LondonLondonEngland

Personalised recommendations