Skip to main content

Part of the book series: NATO Science Series ((NSSE,volume 360))

  • 394 Accesses

Abstract

The goal of molecular design is to create molecular aggregates and materials with special, tailored properties. Such an endeavour will be more successful the more we know about molecular interactions and how the properties of a molecule change in different surroundings. As long as a molecule keeps its essential identity in the bound state, it is appealing to retain the concept of’ a molecule’ even within a crystal or a liquid, because it relates so closely to well known chemical concepts. However, the properties of many molecules, including the water molecule, are known to be sensitive to their surroundings and their states of aggregation. For instance, the average O…O distance in the gaseous water dimer is 2.98 Å, while in liquid water it is only ~2.85 Å, and in normal ice ~2.75 Å. This gradual shortening of intermolecular bond distances is a manifestation of the cooperative nature of the intermolecular bonding, where certain geometrical arrangements give rise to large changes in molecular properties. In this paper, I will use the water molecule as an example, because water is a good and important representative of molecules which exhibit long-ranged interactions. Such molecules affect their neighbours, but the interaction also leads to changes in the molecule itself - a feature highly relevant in the context of molecular design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. CRYSTAL 95. User’s Manual. An ab initio All-Electron LCAO-Hartree-Fock Program for Periodic Systems, R. Dovesi, V.R. Saunders, C. Roetti, M. Causà, N.M. Harrison, R. Orlando and E. Aprà (Theoretical Chemistry Broup, University of Turin, and SERC Daresbury Laboratory), December 1996.

    Google Scholar 

  2. M. Dupuis, J. Rys and H.F. King (1976), J. Chem. Phys. 65, 111; M. Dupuis, A. Farazdel, S.P. Kama and S.A. Maluendes, In: MOTECC, Modern Techniques in Computational Chemistry, Ed. E. Clementi, ESCOM, Leiden (1990).

    Article  CAS  Google Scholar 

  3. Gaussian 92/DFT, Revision G.4, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. W. Wong, J. B. Foresman, M. A. Robb, M. Head-Gordon, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1993.

    Google Scholar 

  4. C. Mølier and M.S. Plesset (1934), Phys. Rev. 46, 618.

    Article  Google Scholar 

  5. T.H. Dunning, Jr. and P.J. Hay, in Modern Theoretical Chemistry Vol. 3: Methods of Electronic Structure Theory, Ed.: Henry F. Schaefer III, p. 1, Plenum Press, New York (1977).

    Google Scholar 

  6. A.J. Thakkar, T. Koga, M. Saito and R.E. Hoffmeyer (1993), Int. J. Quantum Chem. Quantum Chem.Symp. 27, 343.

    Article  CAS  Google Scholar 

  7. P. Coppens, X-ray Charge Densities and Chemical Bonding, Oxford University Press (1997).

    Google Scholar 

  8. K. Hermansson and M. Alfredsson. J. Chem. Phys. In press.

    Google Scholar 

  9. W.F. Kuhs, J.L. Finney, C. Vettier and D.V. Bliss (1984), J. Chem. Phys. 81, 3612.

    Article  CAS  Google Scholar 

  10. K. Hermansson and J.O. Thomas (1982), Acta Crystallogr. B38, 2555.

    CAS  Google Scholar 

  11. K. Hermansson and S. Lunell (1982), Acta Crystallogr. B38, 2563.

    CAS  Google Scholar 

  12. K. Laasonen, M. Sprik, M. Parrinello and R. Car (1993), J. Chem. Phys. 99, 9080.

    Article  CAS  Google Scholar 

  13. J. Caldwell, X.D. Liem and P.A. Kollman (1990), J. Am. Chem. Soc. 112, 9144.

    Article  CAS  Google Scholar 

  14. M. Sprik (1991), J. Chem. Phys. 95, 6762.

    Article  CAS  Google Scholar 

  15. L. Ojamäe and K. Hermansson (1994), J. Phys. Chem. 98, 4271.

    Article  Google Scholar 

  16. K. Hermansson, S. Knuts and J. Lindgren (1991), J. Chem. Phys. 95, 7486.

    Article  CAS  Google Scholar 

  17. T. Chiba (1964), J. Chem. Phys. 41, 1352.

    Article  CAS  Google Scholar 

  18. B. Berglund, J. Lindgren and J. Tegenfeldt (1978), J. Mol. Struct. 43, 179.

    Article  CAS  Google Scholar 

  19. D. T. Edmonds, S. D. Goren, A. A. L. White and W. F. Sherman (1977), J. Magn. Reson. 27, 35.

    CAS  Google Scholar 

  20. M. Alfredsson and K. Hermansson. Chem. Phys. In press.

    Google Scholar 

  21. M.J. Wojcik, J. Lindgren and J. Tegenfeldt (1983), Chem. Phys. Lett. 99, 112.

    Article  CAS  Google Scholar 

  22. O. Kristiansson, A. Eriksson, J. Lindgren (1984), Acta Chemica Scand. A38, 613.

    Article  CAS  Google Scholar 

  23. H. Kleeberg, G. Heinje and W. Luck (1986), J. Phys. Chem. 90, 4427.

    Article  CAS  Google Scholar 

  24. G. Zundel and J. Fritsch, In: The Chemical Physics of Solvation, Vol. 2, Eds.: R.R. Dogonadze, E. Kaiman, A. Komyshev and J. Ulstrup, Chapter 2: Interactions in and Structures of Ionic Solutions and Polyelectrolytes. Infrared Results. Elsevier, Amsterdam (1986).

    Google Scholar 

  25. P.-Å. Bergström, J. Lindgren, M. Read and M. Sandström (1991), J. Phys. Chem. 95, 7650.

    Article  Google Scholar 

  26. W. Mikenda (1986), Monatshefte fur Chemie 117, 977.

    Article  CAS  Google Scholar 

  27. J. Lindgren, K. Hermansson and M.J. Wojcik (1993), J. Phys. Chem. 97, 3712.

    Article  Google Scholar 

  28. K. Hermansson, J. Lindgren and M.M. Probst (1995), Chem. Phys. Lett. 233, 371.

    Article  CAS  Google Scholar 

  29. B. Berglund, J. Lindgren and J. Tegenfeldt (1978), J. Mol. Struct. 43, 169.

    Article  CAS  Google Scholar 

  30. J.E. Bertie and E. Whalley (1964), J. Chem. Phys. 40, 1646.

    Article  CAS  Google Scholar 

  31. J.E. Bertie and F.E. Bates (1977), J. Chem. Phys. 67, 1511.

    Article  CAS  Google Scholar 

  32. L. Ojamäe and K. Hermansson (1992), J. Chem. Phys. 96, 9035.

    Article  Google Scholar 

  33. S. Knuts, L. Ojamäe and K. Hermansson (1993), J. Chem. Phys. 99, 2917.

    Article  CAS  Google Scholar 

  34. K. Hermansson and L. Ojamäe (1995), Solid State Ionics 77, 34.

    Article  CAS  Google Scholar 

  35. K. Hermansson. To be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hermansson, K. (1999). Molecules in Crystals — What Makes Them Different?. In: Howard, J.A.K., Allen, F.H., Shields, G.P. (eds) Implications of Molecular and Materials Structure for New Technologies. NATO Science Series, vol 360. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4653-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4653-1_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5817-6

  • Online ISBN: 978-94-011-4653-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics